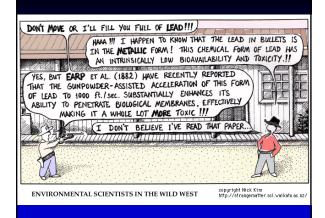
Childhood Lead Poisoning Why you <u>might</u> be smarter than your parents

Noel Stanton WI State Lab of Hygiene 2601 Agriculture Drive PO Box 7996 Madison WI 53707 (608) 224-6251 nvstox@mail.slh.wisc.edu

Elemental Exposure-General Truisms


- Most are not toxic
- Nutritional = less toxic (Zn, Cd)
 - Homeostasis
- Abundance 1 = toxicity
- Every truism has exceptions

Speciation Considerations

- Can greatly influence toxicity
- Ability to differentiate limited, improving - Cr⁺³ = nutrient, Cr⁺⁶ = carcinogen
 - Toxicity As⁺³ > As⁺⁵ >>organic As

Exposure Routes

- Ingestion—most common
- Inhalation—more dangerous

Mechanisms of Action

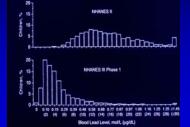
- Binding to SH groups – alters protein shape
- Substitution for nutritional element

Assessment

- Contamination biggest concern

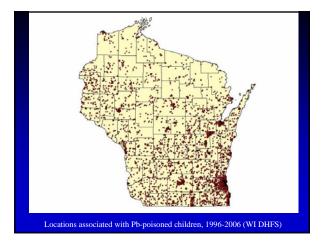
 serum AI: 1970 = 1.000 µg/L, 2002 = 2 µg/L

 Best sample will be element
- and species dependent
 - correlation w/disease often limited
 - Blood, urine, serum typical
- Hair is generally NOT valid
- Analytical methods
 - Atomic spectrometry (AA, ICP-MS)Electrochemical (ion-specific electrodes, ASV)
 - XRF

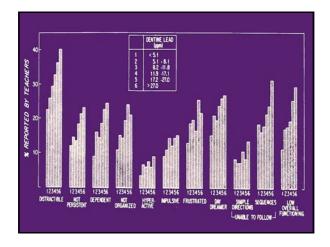

Lead and Exposure

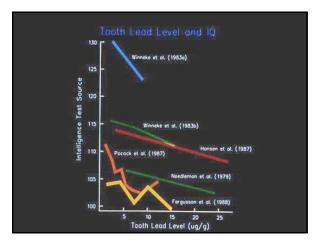
- Many uses-now~85% batteries
- Widely dispersed in environment - U.S., huge reservoir in housing
- Well-characterized env. toxin
- Many toxic effects
- Young children most impacted – Subclinical effects

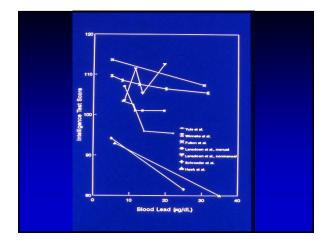
Major Public Health Success


Existing blood Pb threshold for action = 10 µg/dL
1976-80, mean blood Pb ~14.9 µg/dL (88%>10)
2002, mean blood Pb ~1.7 µg/dL (1.2%>10)

But...Still a Big Problem


Nationally, 1.2% still >10, ~180,000 kids
WI 4.7% entering school had Pb >10 (2006)
2111 kids (2.6% tested) >10, ~5/day (2006)





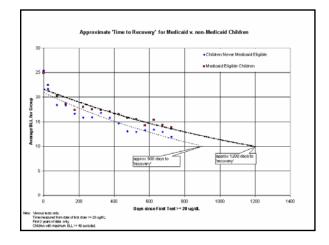
The Lead-Learning Link

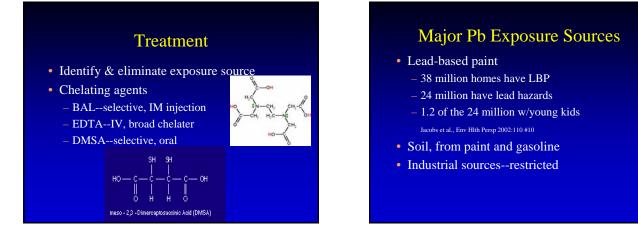
- Low-level Pb effect studies began 1970's
- Linked IQ, cognitive problems with Pb
- Studies replicated worldwide
- Early study populations still followed
- Demonstrated links to delinquency, violence, etc.
- IQ as Pb are may be steepest at lower []

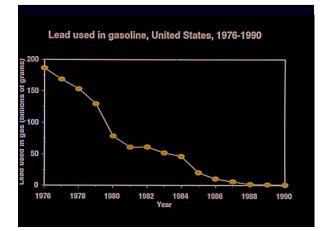
Confounding Variables

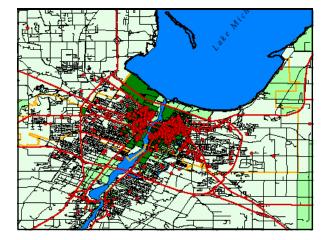
- Studies control for many other influences
- Examples include:

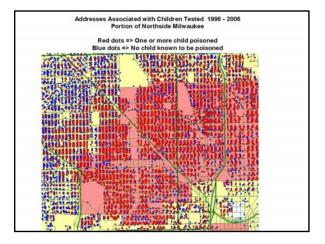
Parental education level(s) Smoking during pregnancy Birth order HOME* score Gender of child Race of child Parental occupation(s)


Maternal age at birth Birth weight Feeding style (breast or bottle) Maternal IQ Socio-economic status Immunization history Alcohol consumption *HOME = Home Observation for Measurement of the Environment

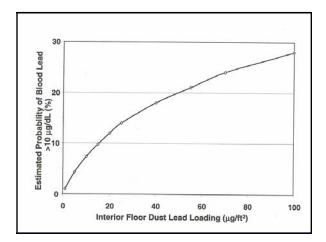

Lead Toxicokinetics


- Absorption
 - Inhaled lead ~40% (not sig. for children)
 - Ingested lead ~10-40% (children) ~32%% adults
- Distribution
 - Blood & soft tissue, ¹/₂ life=30-40 days
 - Tooth & bone, ¹/₂ life=25 years (>90% body burden)
 - Equilibrium exists between the compartments


• Excretion primarily via bile/feces & urine, ~2:1

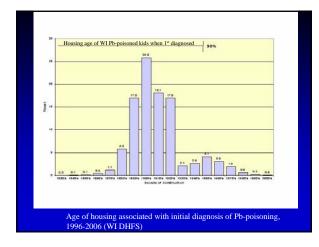






Other Exposure Sources

- Ceramic glazes
- Traditional medicines & cosmetics

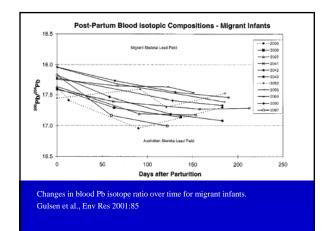


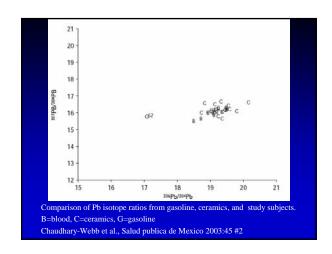
Risk Factors/Predictors

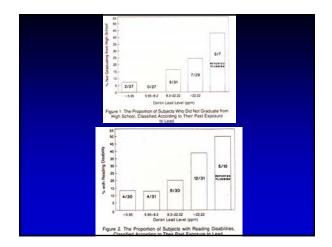
- Housing age & condition
 - 92% of WI poisoned kids live in pre-1950 housing
- Poverty
 - 88% of poisoned kids in Medicaid/WIC
- Housing renovation
- Residency Status
- Pica and developmental deficits
- Fe and other dietary deficiences

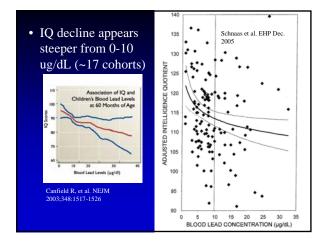
Pb Isotope Ratios

Pb has four isotopes:

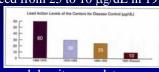

- Pb 204 "native," relative abundance (ra)=1.4%
- Pb 206 product of uranium decay, ra=24.1%
- Pb 207 product of actinium decay, ra=22.1%
- Pb 208 product of thorium decay, ra=52.4%


RAs differ slightly in different source Pb

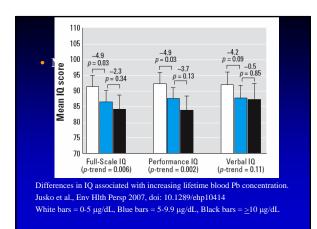

Isotope ratios can be examined to

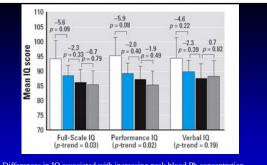

- Demonstrate aspects of Pb pharmacokinetics
- Characterize exposure sources

 Value decreasing as Pb recycling homogenizes ratios



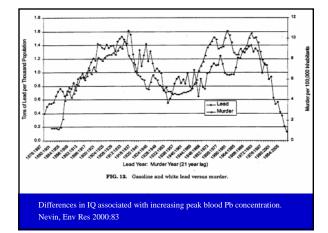
CDC's Blood Lead Threshold • Reduced from 25 to 10 µg/dL in 1991

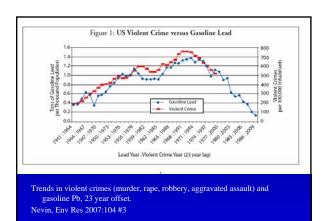


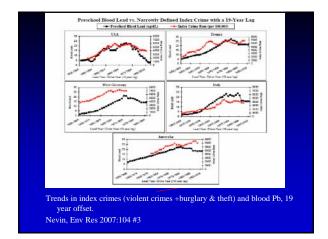

• Unchanged despite new data

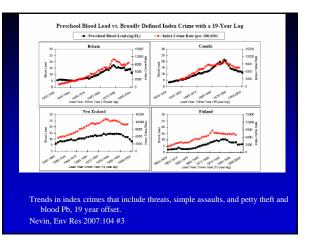
- Examined in 2005 publication
 Reasons cited for not reducing
 - Lack of effective interventions
 - Lack of demonstrated threshold-artificial to set
 - Measurement uncertainty, resulting false pos/neg
 - Lack of resources
 - Politics???

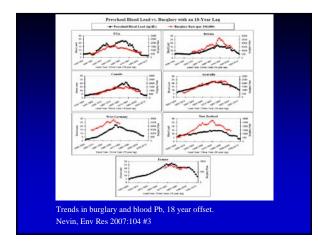
Jusko et al. study


- Study designed to examine impact of [Pb] <10 ug/dL on cognitive function
- Cohort followed 6 mo.-6 yr, n=174
- IQ measured using Weschsler Scale
- Confounding variables controlled:
 - Child's birthweight, gender, transferrin saturationMother's race, IQ, and education level
 - HOME-SF total score (home observation for measurement of the
 - Environment Inventory-short form) - Family income
 - Maternal prenatal smoking






Differences in IQ associated with increasing peak blood Pb concentration. Jusko et al., Env Hlth Persp 2007, doi: 10.1289/ehp10414


White bars = 0-5 $\mu g/dL,$ Blue bars = 5-9.9 $\mu g/dL,$ Black bars = 10-14.9 $\mu g/dL$ Grey bars = ${\geq}15$ $\mu g/dL$

- So, Pb exposure has gone down
- In turn, IQ has gone up
- Consequently, you might be smarter than your parents
- and more law-abiding too!