Culture of Urine Specimens

K. Sue Kehl, Ph.D., D(ABMM)
Associate Professor, Pathology
Medical College of Wisconsin
Associate Director of Clinical Pathology & Technical Director of Microbiology,
Children’s Hospital of Wisconsin
Milwaukee, Wisconsin

March 11, 2009

Objectives

- List the culture media and incubation conditions used for urine specimens.
- Discuss which organisms are considered to be pathogens vs. contaminants or normal flora in urine and how colony count and type of specimen affect this decision.
- Discuss when susceptibility testing should be performed on a urine specimen isolate.

Anatomy

Front View of Urinary Tract

www.health.uab.edu/hospital

Normal flora

- Staphylococcus, coagulase negative (excluding S. saprophyticus)
- Streptococcus viridans group
- Lactobacillus spp.
- Corynebacterium spp.
- Neisseria spp. Other than gonorrhoeae or meningitidis
- Peptostreptococcus spp.
- Propionibacterium spp.
- Commensal Mycobacterium spp.
- Commensal Mycoplasma spp.

Pathogens

- Community acquired
 - E. coli (uropathogenic)
 - Klebsiella pneumoniae
 - Staphylococcus saprophyticus
 - Complicated or recurrent infections
 - Proteus mirabilis
 - Pseudomonas aeruginosa
 - Klebsiella spp. and Enterobacter spp.
- Hospital acquired
 - E. coli, Klebsiella, Proteus, Pseudomonas, Enterococcus, Candida

Pathogenesis

- Ascending
- Descending
- Virulence factors
 - Type 1 fimbriae
 - Capsules
 - Type P fimbriae
- Risk factors
 - Mechanical obstruction
 - Neurologic abnormality
 - Vesico ureteral reflux
Clinical Syndromes

• Urethritis
• Asymptomatic Bacteriuria
• Cystitis
• Acute Urethral Syndrome
• Pyelonephritis

Specimen Collection and transport

• Clean Catch
• Straight Catheter
• Indwelling Catheter
• Cystoscopic Specimens

Transport Devices

• Deliver to the laboratory within 2 hours of collection
• Refrigerate for up to 24 hours
• If specimens are delayed in transport and refrigeration is not possible, use transport tubes with preservatives

Direct examination

• Microscopic
 - Gram stain
 - Easy, inexpensive
 - 1 bacteria/100 of an unspun urine correlates with > 10^5 CFU/ml and 1 leukocyte/100 correlates with pyuria
 - Sensitivity 96%, Specificity 91%
 - Disadvantage
 - Unable to detect lower colony counts
 - Not reliable for the detection of PMN
 - Labor intensive
 - Pyuria
 - 8 PMN/mm^3 correlates with excretion of 400,000 PMN into the urine per hour which correlates with infection
 - Disadvantage
 - Urine microscopic examination of spun urine does not correlate well with the PMN excretion rate or the presence of infection
 - Pyuria can also be associated with vaginitis; thus is not specific for infection

Urine Screens - Chemical Methods

• LE/Nitrate Test Strips
• Uriscreen

Urine Screens - Automated Methods

• Video system examines images of uncentrifuged urine specimens. Capable of identifying many cellular structures including leukocytes and bacteriuria
 - IRIS
 - Sysmex UF-100
• Computerized fluorescent microscopic imaging technology used to analyze fluorescent probes which stain a monolayer of urine on a membrane
 - Cellenium -16US
• Release ATP from somatic cells then liberate and detect bacterial ATP.
 - Coral UTI Screen System
 - Sensitivity 86%, Specificity 75%
Media Inoculation

- 5% sheep blood agar
- MacConkey/EMB agar
- CNA or PEA agar
- CLED (cystine lactose electrolyte deficient) agar
- Chromogenic media

Culture Quantitation

- Surface Streak
 - Disposable loop
 - Calibrated loop
 - Automated system
- Pour plate

Urine Screens - Culture Kits

- Simple to use, relatively inexpensive
- Useful when transport can be a problem
- Require overnight incubation

Automated plating instruments
Specimen Workup - Clean Catch

<table>
<thead>
<tr>
<th>Number of Isolates</th>
<th>Colony Count</th>
<th>Additional Criteria</th>
<th>Identification</th>
<th>Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 10<sup>3</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10<sup>2</sup> - 10<sup>3</sup></td>
<td>Symptomatic female, Male with prostate infection</td>
<td>Definitive ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 10<sup>2</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10<sup>1</sup> - 10<sup>2</sup></td>
<td>WBC (LE) present</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 10<sup>1</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WBC (LE) presence: WBC (Leukocyte) in the specimen.

FAQs

- How long should cultures be incubated?
 - A minimum incubation of 18 hours is sufficient unless the specimen was collected by an invasive technique (straight cath).
 - The patient is immunocompromised.

- What is the significance of S. pneumoniae in the urine?
 - It is usually an incidental finding in both children and adults.

- Should the culture workup be modified for geriatric patients?
 - Mixed cultures or > 3 uropathogens should be worked up only if the patient is symptomatic or febrile and properly collected.

- Are anaerobic cultures appropriate?
 - Not a significant cause of urinary tract infections.

Specimen Workup - Cath

<table>
<thead>
<tr>
<th>Number of Isolates</th>
<th>Colony Count</th>
<th>Additional Criteria</th>
<th>Identification</th>
<th>Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 10<sup>3</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10<sup>2</sup> - 10<sup>3</sup></td>
<td>Symptomatic female, Male with prostate infection</td>
<td>Definitive ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 10<sup>2</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10<sup>1</sup> - 10<sup>2</sup></td>
<td>WBC (LE) present</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 10<sup>1</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WBC (LE) presence: WBC (Leukocyte) in the specimen.

FAQs

- What is the significance of E. coli O157 in the urine?
 - Usually not representative of Shiga-toxin producing E. coli.

- What is the appropriate response to: “My patients are special. Workup everything that grows.”?

Specimen Workup - Cystoscopic

<table>
<thead>
<tr>
<th>Number of Isolates</th>
<th>Colony Count</th>
<th>Additional Criteria</th>
<th>Identification</th>
<th>Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 10<sup>2</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10<sup>1</sup> - 10<sup>2</sup></td>
<td>One predominant organism</td>
<td>Definitive ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 10<sup>1</sup></td>
<td>Definitive AST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAQs

- Extent of workup of organisms:
 - Staphylococcus: ID and AST of S. aureus, ID of S. saprophyticus for females of childbearing age, AST not necessary for S. saprophyticus or other coagulase negative Staph.
 - Yeast: ID of C. albicans or C. glabrata. Species identification of others only upon request.
 - Beta-hemolytic Streptococcus: ID, particularly women of child-bearing age for GBS.
 - Enterococcus: Check for VRE on inpatients. ID to species level and AST for VRE only and on request.
 - G. vaginalis: ID only if present in quantities 10 times greater than all other flora.
 - Aerococcus: ID only if present in quantities 10 times greater than all other flora.
 - Corynebacterium (urease positive): ID and AST if > 100,000 and greater than 10 times that of all other flora.

- What is the appropriate response to: “My patients are special. Workup everything that grows.”?
Contact Information

• Sue Kehl, Ph.D. D(ABMM)
 kskehl@mcw.edu
 414 266 2529