LCSI: LeadCare Situation Investigation

Anatomy of the LeadCare Product Recall

Tracy Fritsch WI State Laboratory of Hygiene 2601 Agriculture Dr PO Box 7996 Madison,WI 53707-7996 602-224-6252 tlhtox@mail.slh.wisc.edu

ESA LeadCare Analyzer

- A portable device for measuring blood lead (BPb) levels.
- Based on Anodic Stripping Voltammetry (ASV).
- Uses disposable screen-printed electrodes
- Requires blood to be "treated" with a reagent that decomplexes lead bound to proteins.
- Takes around 3-4 minutes per analysis

ESA LeadCare

- Calibration using an electronic button.
- Buttons are specific to each batch of sensors
- Blood specimens are treated with reagent for 1 minute.
- Treated blood deposited on the sensor

ESA LeadCare

Advantages:

- Moderately complex but easy to use.
- Dr's office use
- Rapid results (3-4 m)
- Low cost device
- (~\$2K)
- \$7 a test
- Can operate @ 9V

ESA LeadCare

Limitations:

- Blood must be fresh (<24 hrs old)
- Cannot refrigerate blood
- Response is affected by glutathione
- Sensor lots may vary
- Temperature sensitive

WI Proficiency Program

- Bureau of Maternal and Child Health sponsors the PT program
- Our cows are dosed with lead, so it is biologically bound
- The samples are aliquoted and stored frozen until shipment
- Mailed to participants, who analyze the samples and report results back, which are then graded

WI Proficiency Program

- Target values are determined by a group of referee laboratories
- LeadCare targets are determined by participant mean
- Currently there ~600 labs in the program, about half are LeadCare
 - ~40 International labs
- Offer two types of Programs
 - Regulatory Program
 - Monthly Blood Lead Program

LeadCare Recall Chronology

- In May 1997, data¹ was presented comparing the LC prototype with a reference method. It was concluded that it was accurate for screening children
- In September, the LeadCare is commercially introduced
- In October, LeadCare users begin to enroll in the WI PT Program
- Shannon M and Rifai N. The Accuracy of a Portable Instrument for analysis of Blood Lead in Children. Amb Child Health 1997;3:249-254

LeadCare Recall Chronology

- It was expected that the samples would exhibit a positive bias, relative to other methods
 Due to specimen prep and absence of glutathione
- This positive bias was observed in early PT events
- Consequently, in December 1997, it was decided that LeadCare results should be evaluated as a separate group

LeadCare Recall Chronology

- In January 2000, our enrollment had grown from 9 to approximately 100 and the positive bias had disappeared
- The LeadCare now exhibited a low bias compared to other methods
- Despite several cooperative efforts by ESA and WI, the reason for this trend was not determined

LeadCare Recall Chronology

- In June 2001, Taylor, Jones, et all, report that a comparative study of occupationally exposed adults demonstrated a modest positive bias for the LC compared to a referee method²
- Taylor L, Jones RL, Kwan L, Deddens JA, Ashley K, and Sanderson WT. Evaluation of a portable blood lead analyzer with occupational exposed populations. Am J Ind Med 2001;40:364-362

LeadCare Recall Chronology

- In August 2004, the Blood Lead PT program administered by NY State reports a low bias in LeadCare results compared to other methods
 - NY provides fresh whole animal blood
 - Directly compare LeadCare with other methods
- Failure rates of 69% and 38% for the previous two PT events
 - Failure rates had previously been below 10%
- In November, there continues to be a low bias and NY gave the directive to report only qualitative results (≥10 µg/dL or <10 µg/dL)</p>

LeadCare Recall Chronology

- In December 2004, WSLH and ESA initiate a cooperative evaluation study using fresh human blood from occupationally exposed workers
- Three sensor lots were examined and all three demonstrated a low bias

What happened next?

- ESA reviewed data and requested additional studies...
- WSLH conducted a second study, using fresh human blood from exposed workers
 - The blood was placed in reagent at WSLH and shipped to ESA for analysis
 - A fourth sensor lot was used
 - Shipped to ESA in Feb. 2005

Spring 2005

- WI shared data with representatives from NY and CDC seeking comment
- Contacted Bureau of Maternal & Child Health (MCH) about the bias and shared data
 - Conference call was held with MCH, ESA, WI, and CDC to discuss issue

Spring 2005, cont'

- Correspondence from the CDC, that more data is needed, especially since the results were from occupationally exposed adults and not children
- Noted a CDC publication regarding positive bias on adult blood

Spring 2005, cont'

- Beginning in April we started asking our participants in the PT program to provide us with their sensor lot code for further investigations
- There were 2 labs using a new lot, and their results were higher than the other LeadCare labs and the referee targets
- Shared this data with ESA

Spring 2005, cont'

- May 3, WI receives the newest lot of LC sensors to evaluate.
- ESA indicates that this new lot should read higher than other lots on the PT specimens, but not on patient specimens
 - This is attributed to "different glutathione sensitivity"

Spring 2005, cont'

- May 12, Testing of the new lot is completed. And as anticipated, results on the PT specimens were higher
- May 12, WI concludes that the bias is real and recommends that LeadCare users should be notified and contacts MCH

Sample	Lot CCA	Referee	Lot CCJ	
*	Average	Targets	Average	
0602-01	0.6	1.0	0.7	
0602-02	0.9	1.5	1.0	
0602-03	20.1	23.9	26.0	
0602-04	23.4	28.2	28.1	
0602-05	15.4	19.8	20.8	
0602-06	12.2	16.2	16.9	
0602-07	14.3	19.0	18.1	
0602-08	18.4	25.8	26.3	
0602-09	38.5	20.3	43.5	
0602-10	14.8	22.2	19.3	
0602-11	11.4	17.2	15.0	
0602-12	11.9	17.8	17.3	
0602-13	20.0	26.8	27.7	

Spring 2005, cont'

- May 13, Contacted by ESA that they were voluntarily issuing a recall.
- The recall was prompted by the studies with WI and additional in-house testing

Spring 2005, cont'

- May 20, WI receives the official recall notice issued by ESA.
- The notice states that a low bias of 26% was detected for sensor lots dating back to September 2003.
- 8 lots were recalled
- Recommendation to retest children with lead levels exceeding 6 ug/dL

<section-header> Consequences Sased on the recommendation to retest children with leads >6 µg/dL... State of MA, ~6000 results were affected State of CA, ~100,000 suspect results, ~2% with need to be retested Nationally ...

Notification

- WI agrees to provide a mailing to PT participants that includes the recall letter
- WI will also monitor the sensor lots reported, and provide information back to ESA

Performance

- Data obtained on the new test kit lots demonstrate much improved comparability on fresh human blood
- Absence of significant bias in the NY program
- Results in the monthly WI program also show a disappearance of the negative bias

vent Statistics LM 2005-10	Enrolment: 506 Lat		Laboratories	aboratories Reporting: 499		
Analytical Methods			Event Per	rformance		
		<u>:</u>	V			
100		•R				
arget and Acceptable Range Information	, g/dL			_		_
Group	052834	HPRH	05PB36	1		
Referend Methods Target Value Accepted Result	14 10-18	28 24-32	# 4-12			
LeadCare®		30	7	1)		
Target Value Accepted Result	15	30	3.11	Y		
Aethod Statistics		20.74		,		
Orosp	052834	05PB35	05PB36			
		65PB35				
laferee Laboratoriet (N=14) Mean	14.3	28.4	7.5			
Referen Laboratoriet (N=14) Mean Standard Deviation	14.3	28.4	7.5			
Referen Loboratories (N=14) Maan Standard Deviation Number of Results *	14.3	28.4	7.5			
Referes Laboratoriet (N=14) Mean Standard Deviation Number of Results * All Referend Methods (N=197)	14.3 0.9 14	28.4 0.8 14	7.5 1.1 14			
Referee Laboranceins (N=14) Mann Somdood Deviation Mamber of Randes * All Referenced Mathada (N=197) Mann ²	14.3 0.9 14 14.0	28.4 0.8 14 27.2	7.5 1.1 14 7.5			
Referee Laboratoriet (N=14) Mana Standard Deviation Number of Results * Refereed Methods (N=17) Mean* Standard Deviation *	14.3 0.9 14	28.4 0.8 14 27.2 2.2	7.5 1.1 14			
Raferee Laborenseine (N=2-6) Massi Sonnated Deviations Number of Randis * All Referend Methods (V=197) Mass ⁴ Sonnated Deviation* Participant Rendis (<paris)< td=""><td>14.3 0.9 14 14.0 1.4</td><td>28.4 0.8 14 27.2</td><td>7.5 1.1 14 7.5 1.0</td><td></td><td></td><td></td></paris)<>	14.3 0.9 14 14.0 1.4	28.4 0.8 14 27.2	7.5 1.1 14 7.5 1.0			
Referes Lobernstein (N=1.6) Main Somiand Deviation Number of Results Referent Methods (N=17) Mans ¹⁴ Standard Deviation ⁴⁴ Participant Results (N=1971) Audit Strapping Voltammetry (N=16) Audit Strapping Voltammetry (N=16)	14.3 0.9 14 14.0 1.4 97	28.4 0.8 14 27.2 2.2	7.5 1.1 14 7.5 1.0			
Raferee Laborenseine (N=2-6) Massi Sonnated Deviations Number of Randis * All Referend Methods (V=197) Mass ⁴ Sonnated Deviation* Participant Rendis (<paris)< td=""><td>14.3 0.9 14 14.0 1.4 97 13.3 2.1</td><td>28.4 0.8 14 27.2 2.2 92 26.8 2.2</td><td>7.5 1.1 14 7.5 1.0 97 7.8 1.5</td><td></td><td></td><td></td></paris)<>	14.3 0.9 14 14.0 1.4 97 13.3 2.1	28.4 0.8 14 27.2 2.2 92 26.8 2.2	7.5 1.1 14 7.5 1.0 97 7.8 1.5			
Referent Zuberenterien (N=1:6) Stem Somalend Dervistense Nomhend Dervistense Nathander (N=197) Allt Referenzel Austander (N=197) Mensel* Participant Results (N=197) Anderlis Geringtung Valtenmanstray (N=16) Mansel*	14.3 0.9 14 14.0 1.4 97 13.3	28.4 0.8 14 27.2 2.2 92 26.8	7.5 1.1 14 7.5 1.0 97 7.8			
Riefers Laboranseine (N=16) Mass Sundare of Portation National Constant Realization (N=197) Semante Devision ⁴ Perricipant Result (N=197) Samate Devision ⁴ Perricipant Result (N=197) Perricipant Result (N=197)	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94	28.4 0.8 14 27.2 2.2 92 92 26.8 2.2 87	7.5 1.1 14 7.5 1.0 97 7.8 1.5 98			
Riefers Laboranseine (N=16) Massa Sundare of Daviasion Nambure of Daviasion Nambure of Daviasion Nambure Daviasion Participant Results (N=10) Massa" Sundard Daviasion Sundard Daviasion Description Daviasion Description Daviasion Massa'	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2	28.4 0.8 14 27.2 2.2 92 26.8 2.2 87 27.4	7.5 1.1 14 7.5 1.0 97 7.8 1.5 98 7.4			
Haters Loharanters (N=14) Mass Database Devision Database Advanta. Remonstration (N=10) Database (N=10) Database Devision (N=10) Database Dev	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2 1.2	28.4 0.8 14 27.2 2.2 92 26.8 2.2 87 27.4 2.2	7.5 1.1 7.5 1.0 97 7.8 1.5 98 7.4 0.9			
Interest Linkarssense (%)-16 Maan Datase	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2	28.4 0.8 14 27.2 2.2 92 26.8 2.2 87 27.4	7.5 1.1 14 7.5 1.0 97 7.8 1.5 98 7.4			
Historie Laboraneuris (NC-16) Main Mainhaine of Heardis * Methods of Heardis * Methods Methods (NC-187) Bander Devisions* Participal Resolution(*/Starty) Mainhaine (NC-187) Devisional Resolution(*/Starty) Bandard Devisions* Devisional Resolution(*/Starty) Mainhained Devisions* Mainhained Devisions* Mainhained Devisions*	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2 1.2 98	28.4 0.8 14 27.2 2.2 92 26.8 2.2 87 27.4 2.2 93	7.5 1.1 14 7.5 1.0 97 7.8 1.5 98 7.4 0.9 98			
Riferier Laboransier (N-14) Main Main Marken (Faculty - Network (Methy) Methydrol (N-197) Methydrol (N-	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2 1.2 98 13.3	28.4 0.8 34 27.2 2.2 92 26.8 27.4 2.2 87 27.4 2.2 93 26.8	7.5 1.1 14 7.5 1.0 97 7.8 1.5 98 7.4 0.9 98 7.1			
Birthern Lehren mehrs: Of-16 Mann Mann Manner Michaeler Neuralise Manner Michaeler Manner Michaeler Manner Michaeler Michaele	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2 1.2 98 13.3 1.3	28.4 0.8 14 27.2 2.2 92 26.8 2.2 87 27.4 2.2 9) 26.8 1.6	7.5 1.1 14 7.5 1.0 97 7.8 98 7.4 0.9 98 7.1 0.9			
Hinters Characteristic Victoria Linear Data	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2 1.2 98 13.3	28.4 0.8 34 27.2 2.2 92 26.8 27.4 2.2 87 27.4 2.2 93 26.8	7.5 1.1 14 7.5 1.0 97 7.8 1.5 98 7.4 0.9 98 7.1			
Hinters Lehrannum Vörlö 1 Lan Lan Lan Data Serietti Serietti Serietti Serietti Serietti Serietti Tanasar Alassi Serietti Serietti Serietti Martina Serietti Serietti Serietti Serietti Serietti Martina Serietti Serietti Serietti Serietti Serietti Serietti Martina Serietti Se	14.3 0.9 14 14.0 14.0 14.0 14.0 14.0 14.0 14.0 1	28.4 0.8 14 27.2 2.2 92 26.8 2.3 87 27.4 27.4 27.4 26.8 1.6 100	7.5 1.1 14 7.5 1.0 97 7.8 7.8 7.8 7.8 7.4 98 7.4 98 7.1 0.9 100			
Hinters Characteristic Victoria Linear Data	14.3 0.9 14 14.0 1.4 97 13.3 2.1 94 14.2 1.2 98 13.3 1.3	28.4 0.8 14 27.2 2.2 92 26.8 2.2 87 27.4 2.2 9) 26.8 1.6	7.5 1.1 14 7.5 1.0 97 7.8 98 7.4 0.9 98 7.1 0.9			

Recent Developments

- Based on recent data on the new sensor lots, NY lifted their qualitative reporting restriction on November 21st
- The official closing of the recall by the FDA was anticipated in November 2005
- In WI, the issue in the PT program was resolved by August

What Did We Learn?

- Value of PT extends beyond the evaluation of individual laboratories
- Changes in performance can provide evidence of widespread analytical issues
- Cooperation between the manufacturer and the PT providers facilitated the investigation and resolution of the problem

What's on the Horizon?

- Development of a new LeadCare analyzer that will be 'waived'
- Similar to the current LeadCare, but will not have to quantitatively measure the blood
- By being waived, this instrument would not have to participate in PT

And the bias problem?

- Rooted in human error during the calibration process and not a defect in the sensors themselves
 - An absence of glutathione
- Blood that was used to calibrate was the same as what WI uses in its PT program
 Need to add glutathione to our blood