Molecular Biology 101 for Laboratory Professionals: Part One

Erik Munson Clinical Microbiology Wheaton Franciscan Laboratory Wauwatosa, Wisconsin

The presenter states no conflict of interest and has no financial relationship to disclose relevant to the content of this presentation.

OUTLINE

- Ι. Cell biology vignette
- Molecular diagnostic application
- III. Life-creating, life-changing events
 - **DNA** structure
 - **DNA** replication

"D#*%it, Jim, I'm not a physician." Molecular Biology

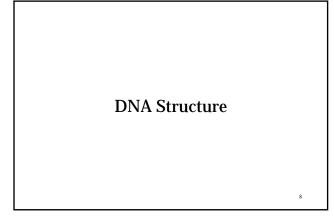
...including myself

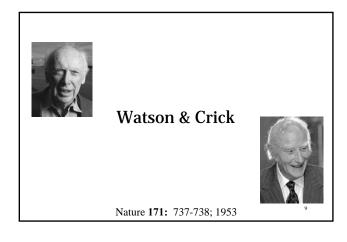
Some Perspective

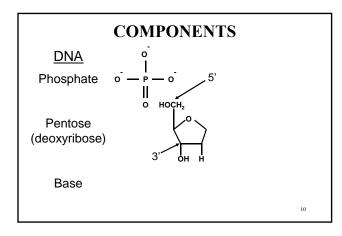
MACROMOLECULES

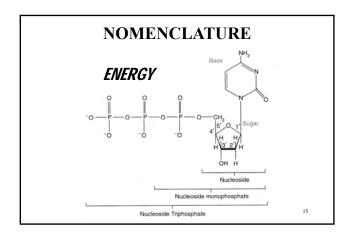
Proteins

Lipids




Carbohydrates


Nucleic acids



DOUBLE STRANDED EVIDENCE

G + C content

Previous tetranucleotide hypothesis:

DNA consists of equal quantities of 4 bases

Chargaff ratios (1952)

Organic Material		Percent thymine		Percent cytosine
Human liver	30.3	30.3	19.5	19.3
Mycobacterium tuberculosis	15.1	14.6	34.9	35.4
				16

DOUBLE STRANDED EVIDENCE

○ G + C content

Polarity

Hydrogen bonding can only occur if chains go in opposite directions

5' end is phosphate; 3' end is hydroxyl

17

DOUBLE STRANDED EVIDENCE

○ G + C content

Polarity

0 50 50 50 50 100 110 Melting (denoturation) temperature (°C)

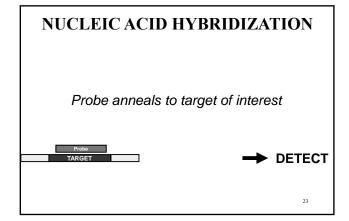
Hydrogen bonding

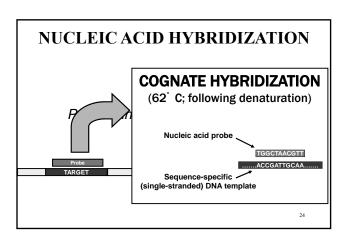
Intrinsically weak
Susceptible to heat (denaturation)

WHY PHOSPHATE??

Easily form linking bonds

Ester bonds stable, yet can be hydrolyzed Removal of nucleotide (repair) without denaturation


- Phosphate remains negatively charged
 - thance of spontaneous nucleophilic attack Nucleotides & DNA stay inside membranes


Molecular Diagnostics Classifications

21

NUCLEIC ACID HYBRIDIZATION

Probe anneals to target of interest

Diagnostic Application: Hybridization

PROBE TECHNOLOGY

- Specificity/sensitivity dependent upon size of probe (stringency)
- Shorter probes → quicker completion

26

PROBE TECHNOLOGY

 More effective on colonial growth than on primary clinical specimens

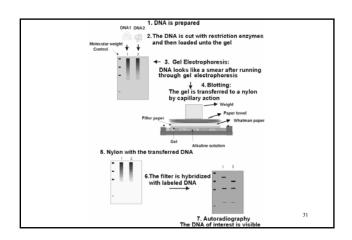
.7

1. LIQUID PHASE HYBRIDIZATION

- Target and single-stranded (ss) DNA free to "interact" in aqueous mixture (fast reaction)
- Digestion of non-hybridized ssDNA
- Recovery of remaining dsDNA hybrids

Tricholoroacetic acid precipitation Hydroxyapatite column Hybridization protection assay

28


2. SOLID PHASE HYBRIDIZATION

- Nucleic acid embedded on nitrocellulose membrane hybridized with nucleic acid probe in solution
- Unbound probe washed away
- Bound probe detected by fluorescence, radioactivity, luminescence, enzyme

29

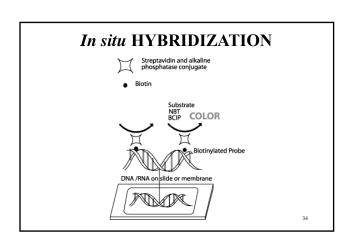
SOUTHERN HYBRIDIZATION

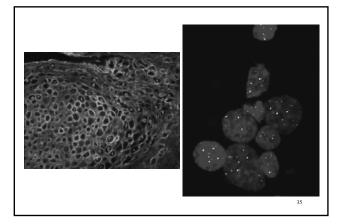
- Facilitates size determination of DNA fragments
- Purified DNA digested with restriction endonuclease; electrophoresis
- Transfer to membrane for hybridization
- Inherited diseases; prenatal diagnosis

NORTHERN HYBRIDIZATION

- Facilitates size determination of RNA fragments
- Electrophoretic separation of purified RNA
- Transfer to membrane for hybridization
- Not routinely utilized in diagnostic setting

3. In situ HYBRIDIZATION


Advantages


Hybridizes target of interest At same time, can provide data on tissue morphology or host cell response

Specimen preparation

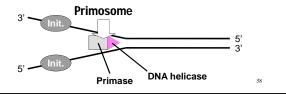
Whole cells or tissue embedded to slides Permeabilize cells while preserving structure Denature nucleic acid

33

DNA Replication

ORIGIN OF REPLICATION

- 245-base pair sequence in Escherichia coli
- Initiator proteins


Bind *oriC* to open double helix Assist in attachment of primosome

PRIMOSOME

Complex of two proteins

Primase (generates RNA primers) DNA helicase (unwinds DNA)

REPLICATION ENZYMES

O DNA polymerase I

Fills in small DNA segments during replication and repair process

O DNA polymerase II

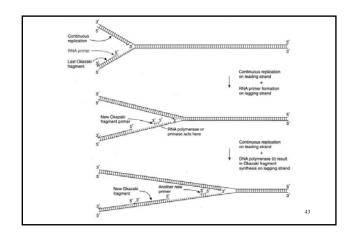
Alternate repair polymerase if DNA polymerase I is damaged by mutation

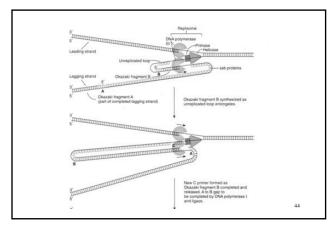
DNA polymerase III

Primary active polymerase during normal DNA replication 39

POLYMERASE SPECIFICITY

Catalyze ester bond ONLY between first
 5' phosphate of new nucleotide and
 3' hydroxyl of previous nucleotide


5' to 3' direction


 Polymerase ONLY allows addition of phosphate to <u>pre-existing hydroxyl</u>

40

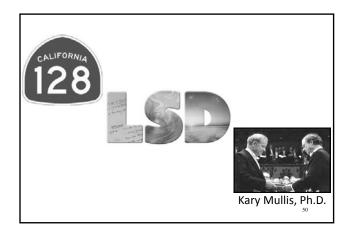
WHY 5' → 3'???

- Specificity of DNA polymerase
- Triphosphate energy source
- In toto, this creates necessity of both lagging strand (Okazaki fragments), leading strand templates for DNA replication

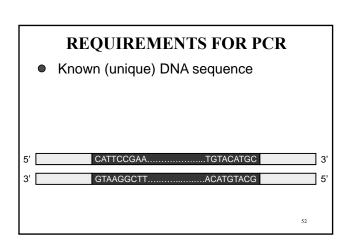
Molecular Diagnostics Classifications

45

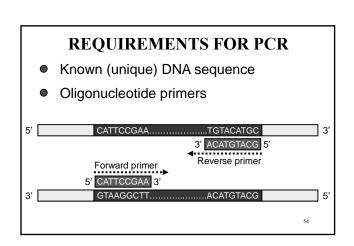
NUCLEIC ACID AMPLIFICATION TESTING (NAAT)


Amplify target of interest prior to detection

46

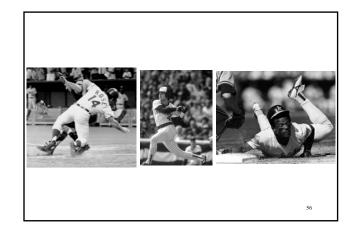

NUCLEIC ACID AMPLIFICATION TESTING (NAAT) Amplify target of interest prior to detection TARGET AMPLIFY DETECT

ANALYTICAL SENSITIVITY Method Approx copy no. detectable Ethidium bromide staining 108 Radiolabeled oligonucleotide probes 106 Radiolabeled full-length probes 104 Ensyme-coupled probes 104 Chemiluminescent probes 104 Compound or branched probes 104 Nucleic acid amplification ≤10


Diagnostic Application: Polymerase Chain Reaction

Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia Randall K. Saiki. Stephen Scharf. Fred Falsona. Kary B. Mullis Glenn T. Horn. Henry A. Erlich. Norman Arreheim "The ability of the PCR procedure to amplify a target DNA segment in genomic DNA raises the possibility that its use may extend beyond that of prenatal diagnosis to other areas of molecular biology."

REQUIREMENTS FOR PCR • Known (unique) DNA sequence • Oligonucleotide primers 3' ACATGTACG 5' Reverse primer 5' CATTCCGAA 3' Conserved sequence 18-28 base pairs optimum Avoid complementarity



REQUIREMENTS FOR PCR

- Known (unique) DNA sequence
- Oligonucleotide primers
- DNA polymerase

Isolated from *Escherichia coli* in 1958 Klenow fragment

55

REQUIREMENTS FOR PCR

- Known (unique) DNA sequence
- Oligonucleotide primers
- DNA polymerase
- MgCl₂

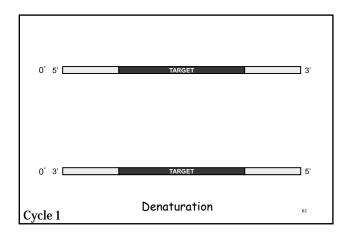
Mix

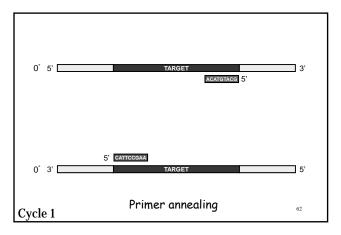
Master

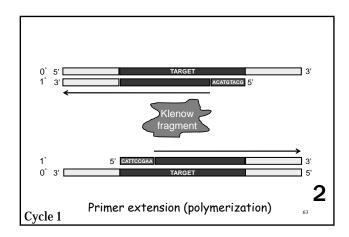
- Deoxynucleotide triphosphates (dNTPs)
- Buffer

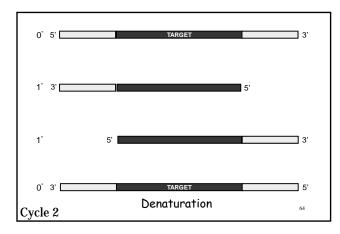
57

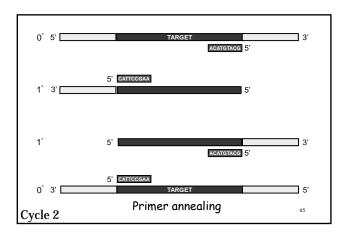
REQUIREMENTS FOR PCR

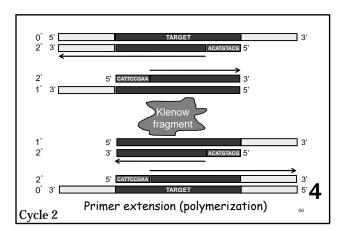

- Known (unique) DNA sequence
- Oligonucleotide primers
- DNA polymerase
- MgCl₂
- Deoxynucleotide triphosphates (dNTPs)
- Buffer
- Temperature modulation

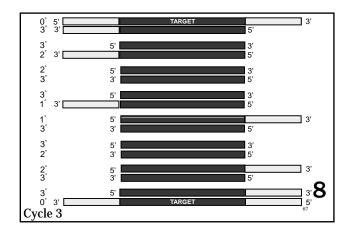

58

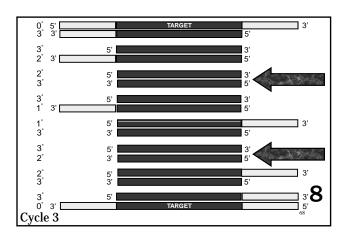

PROTOCOL (Mullis *et al.*)

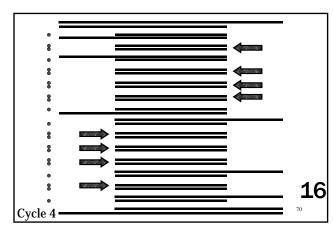

- Denature (95° C, 5 min)
- Anneal/hybridize
 (30° C, 2 min)
- Klenow extension
 (30° C, 2 min)
- Repeat 19 times;
 add Klenow each time

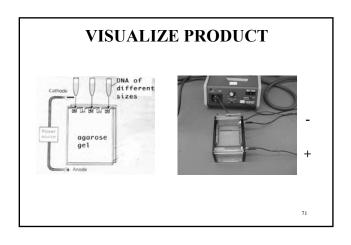


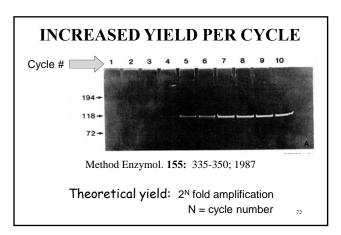












REVOLUTIONARY FINDING

- Taq polymerase isolated from extreme thermophile *Thermus aquaticus*
- Thermostability eliminates necessity to replenish enzyme with each new cycle

Science 239: 487-491; 1988

73

"OPTIMIZED" PCR PROTOCOL

- O Denature (95°C)
- Anneal/hybridize (62° C
- Extension (72° C)
- ~40 cycles

74

THE END

DNA structure (hybridization)

HER2-*neu*Dimorphic fungi
Cystic fibrosis screening
Human papillomavirus

Factor V Leiden
Prothrombin mutation
Parental screening
et cetera

DNA replication (PCR)

