What’s Lurking Out There?
WSLH Case Studies

ASCLS, April 2016
La Crosse, WI

Julie Tans-Kersten, MS, BS-MT (ASCP), TB Laboratory Program Coordinator,
Wisconsin State Laboratory of Hygiene
Case Study: Patient History and Clinical Presentation

- 61 year old male
- History of mild COPD
- Chronic hepatitis C and underlying cirrhosis
- Abnormal CT scan of chest: “bilateral tree-in-bud opacities”
- Clinician is thinking:
 - Indolent infection with non-tuberculous mycobacteria or fungus
 - Sequelae of dust/soil inhalation due to occupation (pouring and setting concrete)
Case Study: Patient History and Clinical Presentation

- Although the patient is asymptomatic, (due to abnormal CT scan), bronchoscopy ordered and BAL collected
- Few AFB seen (smear microscopy)
- TB symptoms and risk factors:
 - Patient denies fever, chills, anorexia, weight loss or night sweats
 - Patient denies TB exposures (girlfriend had latent TB)
 - Skin test/IGRA results unknown
WSLH PCR Testing

- For detection of *M. tuberculosis* complex (TB) and *M. avium* complex (MAC) directly from patient specimens
- Automatically performed on smear positive respiratory and non-respiratory specimens
- Testing takes less than two hours
- Testing is fee-exempt for patients suspected to have active TB
Case Study

- TB PCR result: Positive (low level)
- MAC PCR result: Negative
- TB PCR result confirmed by repeat testing
- “Despite the 2 positive test results, I have great difficulty believing the patient actually has tuberculosis, given the profound paucity of his symptoms and a CT scan which certainly is not strongly suggestive of this possibility”
Possibilities??

- False-positive result
 - Equipment contamination
 - Specimen mix-up
 - Cross contamination during specimen processing
 - False-positive TB PCR result
- Unexpected: “real” TB
How rare are false-positive laboratory results?

 - Reviewed articles and abstracts from Medline, ATS, IUATLD from 1966 to 1999, selected 14 studies evaluating >100 patients
 - False positive culture results are not rare
 - Median false positive rate= 3.1% (range 2.2-10.5%)
 - Clerical errors found to be as common as lab contamination
 - 67% of patients with false positive cultures were treated for TB
How to proceed?

- Patient started on therapy and placed in respiratory isolation
- More (sputum) specimens collected
- Diagnostic laboratory reviews procedures
- Await culture growth (culture confirmation of MTBC)
 - Refer to national center for TB genotyping
TB Genotyping

- Performed at the Michigan Public Health Laboratory and CDC
- Molecular method for distinguishing different strains of *M. tuberculosis* complex
- Used for epidemiology purposes:
 - Discover unsuspected transmission
 - Identify TB outbreaks
 - Detect laboratory cross-contamination event
- Genotyping performed for all culture-positive TB patients in Wisconsin
TB Genotyping

- **“Spoligotyping”:** detects presence or absence of 43 spacer oligo sequences in the direct repeat region of TB DNA
- **MIRU-VNTR:** calculates that number of repeats at 24 tandem repeat loci of the TB DNA

<table>
<thead>
<tr>
<th>Spoligotype</th>
<th>MIRU1</th>
<th>MIRU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>777777477760771</td>
<td>2x3226133321</td>
<td>242534233525</td>
</tr>
</tbody>
</table>
TB Genotype Possibilities

- Possible sources of MTBC in laboratory contamination:
 - Contamination with QC strain of *M. tuberculosis* complex (H37Rv)
 - Contamination with another patient specimen that contained MTBC organisms (handled in the laboratory during the same time period)
TB Genotype Results

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Spoligotype</th>
<th>MIRU1</th>
<th>MIRU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC Strain H37Rv</td>
<td>777777477760771</td>
<td>2x3226133321</td>
<td>242534233525</td>
</tr>
<tr>
<td>Patient Isolate</td>
<td>777760077760771</td>
<td>124326153224</td>
<td>323124123226</td>
</tr>
</tbody>
</table>
TB Genotype Results

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Spoligotype</th>
<th>MIRU1</th>
<th>MIRU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Isolate</td>
<td>777760077760771</td>
<td>124326153224</td>
<td>323124123226</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Wisconsin TB Patients with exact genotype match</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997-1999</td>
<td>4</td>
</tr>
<tr>
<td>2000-2002</td>
<td>6</td>
</tr>
<tr>
<td>2003-2005</td>
<td>1</td>
</tr>
<tr>
<td>2006-2008</td>
<td>2</td>
</tr>
<tr>
<td>2009-2011</td>
<td>6</td>
</tr>
<tr>
<td>2012-2014</td>
<td>2 (most recent in 2014)</td>
</tr>
</tbody>
</table>
Case Study: Follow-up Specimens

<table>
<thead>
<tr>
<th>Collection Date</th>
<th>Smear Result</th>
<th>Culture Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2/16</td>
<td>1+ smear positive</td>
<td>M. tuberculosis complex (MTBC)</td>
</tr>
<tr>
<td>3/3/16</td>
<td>2+ smear positive</td>
<td>MTBC</td>
</tr>
<tr>
<td>3/4/16</td>
<td>1+ smear positive</td>
<td>MTBC</td>
</tr>
<tr>
<td>3/22/16</td>
<td>2+ smear positive</td>
<td>MTBC</td>
</tr>
<tr>
<td>3/23/16</td>
<td>1+ smear positive</td>
<td>MTBC</td>
</tr>
<tr>
<td>3/24/16</td>
<td>2+ smear positive</td>
<td>MTBC</td>
</tr>
<tr>
<td>4/9/16</td>
<td>2+ smear positive</td>
<td>pending</td>
</tr>
<tr>
<td>4/10/16</td>
<td>2+ smear positive</td>
<td>pending</td>
</tr>
<tr>
<td>4/11/16</td>
<td>1+ smear positive</td>
<td>pending</td>
</tr>
</tbody>
</table>
Result Summary

- Genotype results indicated that the isolation of MTBC from this patient was likely not due to a false positive result or cross contamination event:
 - Not a laboratory QC strain
 - Not a recently-isolated strain or a common strain (last seen in 2014)
- MTBC was isolated from culture of subsequent respiratory specimens, confirming the laboratory diagnosis of tuberculosis.
Summary

- Clinicians in areas with low incidence of tuberculosis don’t always include tuberculosis in their differential diagnosis
- The patient in this case study is now being treated for active tuberculosis disease. He will be in respiratory isolation (at home) until:
 - Two weeks of adequate therapy have been administered and there is evidence of clinical improvement
 - Three consecutive smear negative respiratory specimens are obtained
 - Arrangements for post-isolation care have been made
Summary

- WSLH has access to molecular methods for rapid detection of MTBC and genotyping for epidemiology purposes
- Laboratory contamination events occur and are not as rare as you might think
 - Serious implications for patient management
 - Correlate laboratory results with clinical picture
- If any doubts about laboratory results:
 - Troubleshoot
 - Collect more specimens
 - Open communication with health care provider and health departments is necessary
 - Call WSLH for assistance with genotyping
Contact Information

Julie Tans-Kersten
Tuberculosis Laboratory Program Coordinator
Wisconsin State Lab of Hygiene
465 Henry Mall
Madison, WI 53706
Julie.tanskersten@slh.wisc.edu
608-263-5364

Mycobacteriology/TB Laboratory
Wisconsin State Lab of Hygiene
465 Henry Mall
Madison, WI 53706
608-265-2810
Acknowledgements

Ali Lopez

Dave Warshauer

Youngmi Kim
Ana Guaracao

Julie Brockman

Don Busalacchi

Julie Tans-Kersten
Comments or Questions??