ACL – Molecular Microbiology

Michael Costello, Ph.D.
ACL Laboratories
Our Health Systems

Advocate Health Care

Largest Health System in IL

- 12 Hospitals (~3,360 Beds)
 - 1 Integrated Children’s Network
 - 5 Level I Trauma
 - 2 Level II Trauma
 - 4 Teaching
- Advocate Medical Group
- Advocate Physician Partners
- Dreyer Medical Group
- Advocate at Home (Home Care/Hospice)
- 34,000 Employees
- $4.6 Billion Revenue

Aurora Health Care

Largest Health System in WI

- 15 Hospitals (~3,000 Beds)
 - 1 Psychiatric
 - 5 Level II Trauma
 - 2 Teaching
- Aurora Medical Group
- Aurora Advanced Medical Group
- Aurora U.W. Medical Group
- Lakeshore Medical Group
- Aurora VNA (Home Care/Hospice)
- 30,000 Employees
- $4.3 Billion Revenue
ACL Laboratories Profile

- One of the largest hospital system laboratories in the US
- $300M Annual Operating Expense Budget
- Provides services to 27 Hospitals; 2 Central Laboratories; 110+ Clinics & Patient Service Centers (PSC)
- 2,700 Associates/Caregivers
- 90 Pathologists; Midwest Diagnostic Pathology (IL) and Great Lakes Pathologists (WI)
- 24M laboratory tests performed annually (50k a day)
- 5200+ Clients outside of our systems
- Couriers: 80+ vehicles, > 3.6 million miles annually
- Client Services handles ~1000 in-bound calls day
“Unique Molecular Test Challenges”

- **Size**
 - The Good
 - Spread cost over 27+ hospitals
 - The Bad
 - 27+ hospitals with unique testing requirements
 - The Ugly
 - Getting two large healthcare systems (Aurora and Advocate) to agree on anything
 - What testing is the most significant?
 - When
 - Where
 - Keeping everyone on the “same page”
 - Which page?
“Unique Challenges”

- Different patient populations
 - Urban – Milwaukee Vs. Chicago
 - Widest spectrum of pathogens
 - Increased antibiotic resistance
 - MRSA, VRE, ESBLs (*shv, tem* Vs. CTX-M), CRE
 - Suburban
 - Widest variation in pathogens and antibiotic resistance
 - Rural
 - Smallest variation in pathogens and antibiotic resistance

<table>
<thead>
<tr>
<th>Viruses</th>
<th>% POSITIVE SPECIMENS*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpes simplex</td>
<td>22</td>
<td>2013 – HSV subtyped (HSV-1=11%; HSV-2 = 10.4%)</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>4</td>
<td>2004 – Diagnosis; 2013 - diagnosis and monitoring</td>
</tr>
<tr>
<td>Epstein Baar virus</td>
<td>N/A 11.3</td>
<td>2003 - throat, rectal, CSF; 2013- CSF only; [yearly panel]</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>10</td>
<td>2004 – vesicles only; 2013 vesicles, CSF, plasma and urine</td>
</tr>
<tr>
<td>Varicella zoster</td>
<td><1 14.3</td>
<td>2004 – vesicles only; 2013 vesicles, CSF, plasma and urine</td>
</tr>
<tr>
<td>Respiratory Viruses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>8</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Influenza A</td>
<td>9</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Influenza 2009 H1N1</td>
<td>N/A 3.4</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Influenza B</td>
<td>4</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>31 7.4</td>
<td>2004 – seasonal; 2013 - RVP available throughout the year</td>
</tr>
<tr>
<td>Human Matapneumovirus</td>
<td>N/A 3.4</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Parainfluenza 1–3</td>
<td>10</td>
<td>2004 – seasonal; 2013 - RVP available throughout the year</td>
</tr>
<tr>
<td>Parainfluenza 4</td>
<td>N/A 1.2</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Coronavirus (4 serotypes)</td>
<td>N/A 2.0</td>
<td>2013 Respiratory Viral Panel available throughout the year</td>
</tr>
<tr>
<td>Enterovirus/Rhinovirus</td>
<td>N/A 17.5</td>
<td>2013 Respiratory samples only. Available through the year</td>
</tr>
</tbody>
</table>

Personal data, M. Costello and L. Mazur, Multiple hospitals, Chicago area and southeast Wisconsin.
Changing Workflow in Microbiology

- Traditional workflow Vs. Syndromic Panels
 - Traditional workflow
 - Sequential traditional ordering of laboratory tests
 - Takes time
 - Less sensitive
 - Can be more expensive than molecular syndromic panels
Changing Workflow in Microbiology

- Syndromic panels
 - To be performed as “stat” tests
 - Meningitis-Encephalitis (ME) Panel
 - Blood Culture Identification Panels
 - Molecular panel vs. MALDI-TOF
 - Ensure that someone acts on results
 - 2-24 hour turnaround time
 - Respiratory Panel
 - Gastrointestinal Panel
1-24 Hour Turnaround Time

All PCR reactions are 3X
CNS Workup
CSF Workup

- CSF for cell count, glucose, protein, Gram stain
- Nucleic acid tests for HSV 1 and 2, VZV, CMV, EBV, and Enteroviruses, Paraechoviruses
- Cell culture: Inoculation of super E-mix (engineered BGMK and A549 cells), HDF, PMK, Hep-2, RD, etc.
- Additional CSF/tissue: freeze at -20°C (-70°C for long term storage)
- Acute phases serum: freeze 1-2 mL at -20°C (-70°C for long term storage)
- Refer CSF and acute phase serum to public health or reference laboratory for seasonal West Nile Virus or other Arbovirus IgM* antibody testing.
- Collect convalescent serum, if required (10-14 days)

Diagnosis established

(+) Nucleic acid tests for HSV VZV, (CMV) or enterovirus
(+) Virus isolation in cell culture
(+) WNV/arbovirus IgM

No viral infection identified – further testing as clinically indicated

- Nucleic acid testing of stored (-20°C) CSF
- EBV, HIV, CMV, JC virus, etc.
- Collect convalescent serum
- Consult with public health/reference laboratory; provide Clinical and travel history. Send paired acute and convalescent sera and frozen CSF/tissue for additional testing

Aseptic meningitis
- Enteroviruses
- WNV, other regional arboviruses
- Travel-associated arboviruses*
- HIV
- HSV-2
- EBV
- VZV.
- Mumps,
- Adenovirus
- LCM
- Influenza A&B

Meningoencephalitis/encephalitis
- WNV or other arboviruses
- Travel-associated arboviruses (Dengue virus or Chikungunya)
- HSV
- Enteroviruses (paraechoviruses
- EBV
- VZV,
- Measles, Rabies
- RSV, hMPV,
- Influenza,
- Adenovirus

Immunocompromised patient
- CMV,
- HSV,
- VZV
- HIV
- EBV
- JC/BK virus
- Enteroviruses
- Parvo B19 virus
- HHV6,
- Toxoplasma gondii

* Consult with Public Health/Reference laboratory for volume of CSF needed for all nucleic acid tests and serology ordered.

Brain biopsy - 0.5 cm³ tissue biopsy usually sufficient for imprints, surgical pathology, comprehensive microbiology, and nucleic acid tests.

Arboviruses include West Nile Virus,
BGMK=buffalo green monkey cells; HDF=human diploid fibroblasts; PMK=primary monkey kidney, RD= Rhabdomyosarcoma cells
Traditional Culture Vs. Syndromic Panels

- Traditional Culture - Sequential/separate diagnostic tests
 - Culture/serology
 - Different tests for bacterial, viral and fungal pathogens

- Meningitis-Encephalitis (ME) Panel
 - One test for viruses, bacteria and fungus
 - How will this panel be used?
 - Triaging ED patients – 1 hour TAT
 - HSV encephalitis admit and treat aggressively
 - Enteroviral meningitis – Send home
 - Rapid diagnosis
 - Antibiotic therapy
 - Viral vs. bacterial
Meningitis/Encephalitis Panel

1 Test. 16 Targets. All in about an hour.

Bacteria
- *Escherichia coli* K1
- *Haemophilus influenzae*
- *Listeria monocytogenes*
- *Neisseria meningitidis*
- *Streptococcus agalactiae*
- *Streptococcus pneumoniae*

Viruses
- Cytomegalovirus (CMV)
- Enterovirus
- Epstein-Barr virus (EBV)
- Herpes simplex virus 1 (HSV-1)
- Herpes simplex virus 2 (HSV-2)
- Human herpesvirus 6 (HHV-6)
- Human parechovirus
- Varicella zoster virus (VZV)

Yeast
- *Cryptococcus gattii*
- *Cryptococcus neoformans*
Respiratory Viral Panel

ACL RESP PANEL - Nov 01 2015 - Feb 20 2016

<table>
<thead>
<tr>
<th>Date</th>
<th>Rotation</th>
<th>Influenza</th>
<th>Other</th>
<th>2009</th>
<th>RSV</th>
<th>All Para</th>
<th>EV</th>
<th>Rhino</th>
<th>H1N1</th>
<th>H2N2</th>
<th>Adeno</th>
<th>All Corona</th>
<th>Total PCRs</th>
<th>POS PCR</th>
<th>Total ACL %</th>
<th>US % FLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2016</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>45</td>
<td>1</td>
<td>33</td>
<td>24</td>
<td>2</td>
<td>9</td>
<td>176</td>
<td>57</td>
<td>451</td>
<td>12.8</td>
<td>n/a</td>
<td>8.8</td>
</tr>
<tr>
<td>02/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>61</td>
<td>2</td>
<td>24</td>
<td>22</td>
<td>10</td>
<td>16</td>
<td>175</td>
<td>40</td>
<td>454</td>
<td>8.8</td>
<td>12.0</td>
<td>6.4</td>
</tr>
<tr>
<td>03/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>62</td>
<td>4</td>
<td>39</td>
<td>15</td>
<td>9</td>
<td>13</td>
<td>167</td>
<td>28</td>
<td>435</td>
<td>6.4</td>
<td>9.1</td>
<td>1.6</td>
</tr>
<tr>
<td>04/01/2016</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>41</td>
<td>1</td>
<td>27</td>
<td>15</td>
<td>6</td>
<td>17</td>
<td>125</td>
<td>16</td>
<td>371</td>
<td>4.9</td>
<td>6.8</td>
<td>0.8</td>
</tr>
<tr>
<td>05/01/2016</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>35</td>
<td>3</td>
<td>31</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>105</td>
<td>5</td>
<td>362</td>
<td>1.4</td>
<td>5.0</td>
<td>0.7</td>
</tr>
<tr>
<td>06/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>3</td>
<td>39</td>
<td>11</td>
<td>13</td>
<td>8</td>
<td>122</td>
<td>3</td>
<td>369</td>
<td>0.8</td>
<td>4.2</td>
<td>0.7</td>
</tr>
<tr>
<td>07/01/2016</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>43</td>
<td>5</td>
<td>51</td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>144</td>
<td>4</td>
<td>396</td>
<td>1.0</td>
<td>3.6</td>
<td>1.8</td>
</tr>
<tr>
<td>08/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>5</td>
<td>48</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>115</td>
<td>7</td>
<td>300</td>
<td>0.7</td>
<td>1.8</td>
<td>0.7</td>
</tr>
<tr>
<td>09/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>7</td>
<td>44</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>86</td>
<td>3</td>
<td>270</td>
<td>1.1</td>
<td>2.5</td>
<td>1.1</td>
</tr>
<tr>
<td>10/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>7</td>
<td>54</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>111</td>
<td>3</td>
<td>316</td>
<td>0.9</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>11/01/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>14</td>
<td>38</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>73</td>
<td>1</td>
<td>287</td>
<td>0.3</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>12/01/2016</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>44</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>68</td>
<td>1</td>
<td>244</td>
<td>0.4</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>01/02/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>45</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>66</td>
<td>2</td>
<td>230</td>
<td>0.9</td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>02/02/2016</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>19</td>
<td>49</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>84</td>
<td>2</td>
<td>363</td>
<td>0.8</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>03/02/2016</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>19</td>
<td>67</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>94</td>
<td>2</td>
<td>443</td>
<td>0.5</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>04/02/2016</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>50</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>73</td>
<td>2</td>
<td>359</td>
<td>0.6</td>
<td>1.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Respiratory Panel

- How will this panel be used?
 - Expense Vs. Utility?
 - Influenza season?
 - Reflex test?
 - In-patients Vs. out-patients
 - Syndromic panels for in-patients?
 - Admit or not to admit
 - Bacterial Vs. viral
Figure 1. Seasonal variation of viral infections

SUMMER
- Adenoviruses
- Herpes simplex
- Cytomegalovirus
- Varicella zoster
- Measles/Mumps
- Respiratory Syncytial Virus
- Parainfluenza 1 and 2
- Parainfluenza 3
- Influenza A and B
- Enteroviruses
- Arboviruses*
- Rotavirus
- Norovirus

FALL

WINTER

SPRING

*Detected by traditional antigen/culture/serology
*West Nile Virus and Dengue Virus

Detected by Nucleic acid amplification
Cytopathic Effect (CPE) in tube culture

Shell vial monolayers stained with FITC-conjugated monoclonal antibodies

Patient respiratory cells stained with FITC-conjugated monoclonal antibodies

Figure 5. Viral growth in cell culture line and viral detection in patient samples.
Respiratory Panel

RESPIRATORY PANEL

The FilmArray Respiratory Panel tests for a comprehensive panel of 20 respiratory viruses and bacteria. The FilmArray instrument integrates sample preparation, amplification, detection and analysis into one simple system that requires 2 minutes of hands-on time and has a total run time of about 1 hour.

- **Simple**: 2 minutes of hands-on time
- **Easy**: No precise measuring or pipetting required
- **Fast**: Turnaround time of about 1 hour
- **Comprehensive**: 20 target respiratory panel

Viral Targets

- Adenovirus
- Coronavirus HKU1
- Coronavirus NL63
- Coronavirus 229E
- Coronavirus OC43
- Human Metapneumovirus
- Human Rhinovirus/Enterovirus
- Influenza A
- Influenza A/H1
- Influenza A/H3
- Influenza A/H1-2009
- Influenza B
- Parainfluenza Virus 1
- Parainfluenza Virus 2
- Parainfluenza Virus 3
- Parainfluenza Virus 4
- Respiratory Syncytial Virus

Bacterial Targets

- *Bordetella pertussis*
- *Chlamydia pneumoniae*
- *Mycoplasma pneumoniae*
MOLECULAR PATHOLOGY UPDATE

ACL RESP. PANEL - Flu POSITIVE RATE 12.6%
Gastrointestinal Panel
Luminex Assay

GPPNL Gastrointestinal Pathogen Panel
Reported as: GASTRO PATHOGEN PNL
Also known as: Gastrointestinal Pathogen Panel by PCR, Viruses: Adenovirus 40/41, Rotavirus A, Norovirus (GI/GII includes Sydney 2012), Bacteria and bacterial toxins: Escherichia coli (E. coli) O157, Enterotoxigenic E. coli (ETEC) LT/ST, Salmonella spp, Shigella spp (S. boydii, S. sonnel, S. flexneri and S. dysenteriae), Campylobacter spp (C. jejuni, C. coli and C. lari only), Shiga-like Toxin producing E. coli (ETEC) stx1/stx2, Vibrio cholerae, Parasites: Giardia (G. lamblia only), Entamoeba histolytica, Cryptosporidium spp. (C. parvum and C. hominis only).

Specimen Requirements
- Patient Preparation: Stool specimens must not be collected after administration of barium, bismuth or oil.
- Collect: Stool in sterile container or in C&S (Cary-Blair) media
- Transport: Do not freeze.
- 5.0 mL (min: 1.0 mL) refrigerated
- Unacceptable Conditions: Frozen, Leaking container, Non-sterile container, Specimen not received in appropriate transport media, Rectal swabs.
- Stability: Ambient: 8 Hours / Refrigerated: 2 Days / Frozen: 2 Weeks (to be Frozen at ACL core lab only - for long term storage)

Ordering Instructions
- Order Remarks: This assay is FDA approved for use with unpreserved raw stool specimens and Cary-Blair media. Other type of collection media are not validated and will be rejected.

Clinical Significance
- Click here for more information

Lab Notes
- Frozen unpreserved stool will limit any additional culture and parasitology type testing due to stability.
- Stool specimens must not be collected after administration of barium, bismuth or oil.
- Throat swabs, vomitus and other stool transport devices will be rejected.
- Not suitable for test of cure on previously positive patient.

Test Performance
- Performed: Weekdays
- Reporting Time: Final within 3 Days
- Performing Labs: ACL IL Central Laboratory - Rosemont, EMR/Interfaced Flagged "Client" Orderable test

CPT Codes
- 87567
Blood Culture Identification Panel
Blood Culture Identification Panel

- Syndromic Panel Vs. MALDI-TOF
- Remote sites Vs. Non Remote sites
 - Considering molecular rapid ID methods for remote sites
In Summary
Outstanding Issues

- Validation/verification of syndromic panel assays
 - Need to validate all pathogens detected

- Controls
 - IQCP?
 - How often to run controls?
 - Single positive or multiplexed controls?
 - Prepare or purchase?

- How/what to charge for syndromic panels?

- Limit ordering of syndromic panels?
 - Influenza test Vs. whole syndromic panel
 - Limit testing by season?
 - Limit ME Panel to patients with abnormal protein, glucose and WBC counts?
Outstanding Issues

- Training
 - Training must be **extensive and continuous** if syndromic molecular panels are to be performed by non-Molecular trained technologists
 - Tests are more complicated than they appear!
 - Test setup **must include** proper precautions against contamination (including barrier and process precautions)
 - HSV-1 contamination example on Biofire
 - Two HSV-1 consecutive positive CSF samples
 - Positive HSV-1 not consistent with patient symptoms and other labs.
 - HSV-1 would have not been ordered if not in the panel
Outstanding Issues

• Think small!
 o Amplicon contamination
 ▪ Multiple glove changes
 ▪ One sample at a time
 ▪ Thoroughly clean after each sample with chemicals that denature nucleic acids
 ▪ No multi-tasking when performing amplified molecular assays.
 ▪ How do you know if you have amplicon contamination?
 ▪ Keep track of your positive samples
 ▪ Look for clusters
 ▪ Ask the physicians if your results makes sense
Summary - What Has Worked for Us

- Taking the time to assess the needs of our patients
 - Infectious Disease physicians
 - Pharmacists
 - ED physicians and others
 - Admit Vs. not to admit
 - ME panel
 - Children – Enterovirus positive – send home
 - Adults HSV-1 positive – Aggressive treatment
 - Respiratory Panel
 - Influenza Vs. others
 - Antivirals Vs. antibiotics
 - Immunosuppressed Vs. not immunosuppressed
Summary - What Has Worked for Us

• Blood Culture Panels
 o Antibiotic stewardship
 ▪ Right antibiotic, at the right time, for the right duration
 ▪ Antibiotic De-escalation
 ▪ Ensure that someone is listening, especially for stat syndromic panels
 ▪ Close the “loop”, labs do not function in a vacuum
 o Tests must be clinically significant and cost effective
• Most benefits will be “downstream”