Influenza and other Respiratory Viruses Update--2019

Pete Shult, PhD
CDD Director & Emergency Laboratory Response

and

Erik Reisdorf, MPH, M(ASCP)CM
Surveillance and Virology Lab-Team Lead
Learning Objectives

• Review of influenza basics.
• Review of the 2018-2019 influenza season.
• Influenza vaccine updates.
• Review the impact of the FDA reclassification in Wisconsin.
• Describe why specimens and testing data is vital for public health programs.
• Discuss surveillance strategy for 2019-2020.
Influenza

The latest information

www.cdc.gov/flu/index.htm
Influenza Virus Basics
“Changeability is its hallmark”

- Influenza types A, B, C and D
 - A and B are major human pathogens
- Negative-sense segmented RNA genome
 - 10 major proteins
- Two major surface proteins of A and B viruses: Hemagglutinin (HA) and Neuraminidase (NA)
 - Nomenclature
 - Role in pathogenesis
 - Defines subtypes
Antigenic Drift

Manifests in HA and NA as a result of continuous and gradual accumulation of point mutations in the HA and NA genes within a subtype.
Estimated Influenza Disease Burden, by Season United States, 2010-11 through 2017-18 Influenza Seasons

In a given season, 5-20% of community may experience illness

Historically Severe Year!
Influenza in the U.S.: 2003-18

Overall Influenza Season Severity

FIGURE 3. Influenza season severity classification,* by age group and season — United States, 2003–04 through 2017–18 seasons†

* CDC began using a new method in 2017 to classify influenza season severity using three indicators: the percentage of visits to outpatient clinics for influenza-like illness (ILI) from ILINet, the rates of influenza-associated hospitalizations from FluSurv-Net, and the percentage of deaths resulting from pneumonia or influenza from the National Center for Health Statistics. This method was applied retrospectively, going back to the 2003–04 influenza season. https://www.cdc.gov/flu/professionals/classifies-flu-severity.htm.

† As of June 1, 2018.

MMWR June 8, 2018, Vol. 67/No.22
U.S. Influenza Surveillance

www.cdc.gov/flu/weekly/overview.htm

Morbidity Surveillance

Virologic Surveillance

Mortality Surveillance

CDC

Health Departments

State-level data to state surveillance coordinators
Influenza Virologic Surveillance

How we monitor the virus

- **Provide situational awareness**
 - Clinical lab testing data → CDC

- **Detect novel or reassortant viruses**

- **Inform vaccine strain selection**

- **Detect and monitor antiviral resistance**
 - Specimens/isolates from clinical labs → PHL → NIRC → CDC

WISCONSIN STATE LABORATORY OF HYGIENE
The 2018-19 Influenza Epidemic

Key Virologic and Epidemiologic Indicators

Influenza Positive Tests Reported to CDC by U.S. Public Health Laboratories, National Summary, 2018-2019 Season

Percentage of Visits for Influenza-like Illness (ILI) Reported by the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet), Weekly National Summary, 2018-2019 and Selected Previous Seasons

FLUVIEW
A Weekly Influenza Surveillance Report Prepared by the Influenza Division
Weekly Influenza Activity Estimates Reported by State and Territorial Epidemiologists

CDC estimates that, from October 1, 2018, through May 4, 2019, there have been:

- 37.4 million – 42.9 million flu illnesses
- 531,000 – 647,000 flu hospitalizations
- 36,400 – 61,200 flu deaths
- 17.3 million – 20.1 million flu medical visits

NOTE: This is the last week in-season burden estimates will be provided. CDC’s active surveillance for laboratory-confirmed hospitalizations for the 2018-2019 season concluded on April 30, 2018.
Influenza – Prevention and Treatment
http://www.cdc.gov/flu/professionals/index.htm
Seasonal Influenza

Antivirals

- **Adamantanes (Amantadine & Rimantadine)**
 - No longer effective against influenza type A,

- **Neuraminidase inhibitors**
 - [Tamiflu & Zanamivir; Peramivir(i.v.)]
 - Effective against influenza subtypes A and B
 - Both oral, inhalant and i.v. preparations available
 - Differ in age ranges, routes of administration, costs, and adverse events
 - Development of complete resistance by former seasonal H1N1; pdmH1N1 and H3N2 remains susceptible

- **Baloxavir marboxil**
Seasonal Influenza

Vaccine

• Primary strategy to reduce influenza infections and their complications
 • Safe and effective(?); usage rates disappointing

• 2 options:
 • Inactivated influenza vaccine
 • Trivalent and quadrivalent
 • Egg or cell culture grown
 • For all age groups ≥ 6 months (Universal)
 • Options now include high potency and adjuvanted
 • Live attenuated influenza vaccine
 • Licensed for non-pregnant persons aged 2-49 years

• Vaccine is matched to circulating strains of seasonal types A (2 subtypes) and B (2 lineages) influenza
Influenza 2018-19

What was expected…

- A/Singapore/INFMH-16-0019/2016 A(H3N2)-like
- A/Michigan/45/2015 A(H1N1)pdm09-like
- B/Phuket/3073/2013-like (B/Yamagata-lineage)
- B/Colorado/06/2017-like (B/Victoria-lineage)

... but a different H3N2 virus snuck in to give our late season H3N2 peak ...
Influenza Vaccine 2019-20

- A/Kansas/14/2017 A(H3N2)-like
- A/Brisbane/02/2018 A(H1N1)pdm09-like
- B/Phuket/3073/2013-like (B/Yamagata-lineage)
- B/Colorado/06/2017-like (B/Victoria-lineage)
Seasonal Influenza Vaccines

How effective?

http://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm

Seasonal Flu Vaccine Effectiveness

VE= percent reduction of frequency of flu among vaccinated people compared to unvaccinated people

Data Table

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. Overall VE (%)</td>
<td>10</td>
<td>21</td>
<td>52</td>
<td>37</td>
<td>41</td>
<td>56</td>
<td>60</td>
<td>47</td>
<td>49</td>
<td>52</td>
</tr>
</tbody>
</table>

Median 40%

However:
- Prevents office visits
- Prevent hospitalization
- Prevents death
Vaccination Rates---2013-2018

General Population and Healthcare Personnel

http://www.cdc.gov/flu/professionals/vaccination/
1918 Influenza Pandemic
100 Year Anniversary of the Great Pandemic

https://www.cdc.gov/flu/pandemic-resources/index.htm
Influenza at the Human-Animal Interface

Influenza A
- H1 - H16*
- N1 – N9*

Aquatic birds

Poultry
Humans
Pigs
Horses
Aquatic mammals

* Bats – H17/18, N10/11
The Changeability of Influenza

Antigenic Shift → Pandemic Influenza

www.cdc.gov/flu

Antigenic “shift”

- Associated with pandemics
- Acquisition of novel genes through reassortment
- Appearance of novel influenza A viruses bearing new HA or HA & NA
 - H5N1 in Asia
 - 2009 H1N1

Pandemic Influenza

Replication in Humans

Efficient and sustained human-to-human transmission
Novel Influenza Infection Reports are Increasing

Human Cases of Reported Novel Influenza A Infection, 1959-2017
Includes Avian H4, H5, H6, H7, H9, H10 & Swine H1, H3 (not H1N1pdm09)

Emerging Novel Influenza A Viruses

- H9N2 1998-2014
- H7N7
- H3N2v 2003
- pH1N1 2009
- H7N9 2011
- H7N2 2011
- H7N4
- H3N2v 2013
- H5NX 2013
- H6N1 2013
- H10N8
- H7N3

Year of Onset 1959 to 2017
>30 fold increase from 1990’s to 2000’s

Freidl, Meijer, deBruin et al Euro Surveill 2014; Cumulative case counts of H5N1 from WHO and Chinese provincial reports

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN 14
Defining Event in 2003
Concerns with Pandemic Influenza

Current zoonotic influenza situation
A(H5N1)

Areas with confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003–2017*

The emergence of Influenza A H5N1

~ 900 cases
Influenza A H7N9
The latest global concern

~ 1600 cases over 5 seasons
Pandemic Influenza: Public Health’s Ongoing Concern

The recipe:

• **Novel influenza A subtype** emerges in humans

• **Virus causes disease** in humans

• Easily transmitted human-to-human
A Global Tool for Pandemic Preparedness

- A global public health tool to prioritize pandemic preparedness activities
 - Evaluates risk from novel viruses currently circulating in animals, i.e. in pre-pandemic period
- Assess potential pandemic risk for:
 - Emergence of a novel influenza virus in humans
 - Human-to-human transmission
 - Public health impact
 - Severity
- The IRAT can prioritize readiness activities
 - Diagnostics, reagents, vaccines and antivirals development
 - Stockpiling and deployment
- The IRAT cannot predict the next pandemic strain

CDC. https://www.cdc.gov/flu/pandemic-resources/monitoring/irat.htm
Updates on Lab Testing: RIDT
Impact of the FDA Reclassification of RIDTs in WI

- The WSLH collects detailed clinical laboratory testing information on the specimen submission forms that accompany specimens submitted.
- The WSLH RT-PCR results were compared to those provided by the clinical laboratories to assess the “real world” performance characteristics at multiple clinical laboratories pre and post FDA reclassification.
Reclassification Impact

- Decreasing the number of RIDTs that were used to primarily two manufacturers.
- The overall performance of the RIDTs assessed by the percent discordant results trended lower, but remained near 10% over the four influenza seasons that were analyzed (pre and post reclassification).
- Highest discordant rate from the past three influenza seasons was a rapid molecular assay
- The number of RIDTs performed are similar from year to year.
Current Seasonal Respiratory Virus Activity, WI 2019

Positivity of Respiratory Specimens by PCR at Wisconsin Laboratories (Excluding Influenza and RSV)

Percent Positive

- Adenovirus
- Coronavirus
- Human Metapneumovirus
- Rhinovirus/Enterovirus
- Parainfluenza
Severe Adenovirus

- Adenovirus outbreak occurred in NJ
 - >24 severe illnesses and 11 deaths
 - Children with compromised immune systems
- University of Maryland
 - Freshman death
- University of Wisconsin
Virus Activity Resources

Wisconsin

- Bi-weekly Laboratory Surveillance Report
 Subscribe at: wcln@slh.wisc.edu
- Virus Activity Graphs
 http://www.slh.wisc.edu/wcln-surveillance/surveillance/virology-surveillance/

National

- FluView (CDC)
- NREVSS (CDC)
Flu Near You!

- Joint research venture.
- Utilizes crowdsourcing data to compile estimates.
- Based on symptom self reporting online
- Anyone can report!
Influenza and non-influenza virus respiratory surveillance
Early......

Influenza season, 2019-2020

% Positive for Influenza by PCR (Wisconsin), Week
Ending September 21, 2019

A (H3N2) 10
A (H1N1)pdm09 4
Flu B 3

No. Positive for Influenza B No. Positive for Influenza A % Positive for Influenza by PCR
Early......

Influenza season, 2019-2020

Data source: CDC Flu View
WHO Global Influenza Surveillance and Response System (GISRS)—Southern hemisphere, 2019

Number of specimens positive for influenza by subtype

- B (Lineage not determined)
- B (Victoria lineage)
- B (Yamagata lineage)
- A (Not subtyped)
- A(H1)
- A(H3)
- A(H5)
- A(H1N1)pdm09
Influenza Severity, Southern Hemisphere

- Clinical severity was low.
- The number of deaths was low.
- VE was expected to be 40-60%

If you have seen one influenza season, you have seen one influenza season!

H1N1 pdm09 → H3N2

Graphs: Lynette Brammer, CDC
What do we do with the specimens submitted?

- Subtype characterization
- Whole genome sequencing
 - 3c.2a, 3c.2a1, 3c.3a
- Provide specimen/isolates to CDC
- Provide weekly summaries
- Antiviral resistance testing
Respiratory Pathogen Surveillance

2019-2020 Season
Influenza Surveillance in Wisconsin

Multi-element approach

1. Rapid Influenza Diagnostic Testing (RIDT) Sites
 - Now ~50% of influenza testing in WI
 - Confirmatory testing during periods of low prevalence (June to November).
 - Please notify WSLH of suspected performance issues (e.g. False positives/negatives)

WSLH can provide confirmatory testing for the first positive influenza specimen of the season.
Influenza Surveillance in Wisconsin

Multi-element approach

2. Enrolled Surveillance Sites
 - 17 labs in 5 public health regions.
 - Provide randomized specimens weekly.
 - Provided a “blue” specimen submission form.

Request to continue to submit the first 1-2 specimens per week with influenza test requests to WSLH.
Influenza Surveillance in Wisconsin

Multi-element approach

3. PCR Labs

- “Gold Standard” testing.
- Provide weekly testing data summary reports.
- Do NOT need to send positive specimens.

Request to report both the number positive and the number tested weekly.

Send Flu A unsubtypable specimens when subtyping for both 2009 H1N1 and seasonal H3 were attempted (Ct<35).
Influenza Surveillance in Wisconsin

Multi-element approach

4. University Health Clinics
 - Concern with severe adenovirus infections.
 - Monitor and type adenoviruses impacting student health.

Request to up to 3 specimens per week for respiratory pathogen testing and characterization.
Laboratory-based Surveillance

All Clinical Laboratories performing influenza diagnostic testing

All Labs:
- Send those with international travel histories
- *Up to one* influenza-related hospitalization per week
- Unusual presentations/results
- Contact with swine/ sick or dead poultry
- Antiviral treatment failure
NRVESS Reporting

NRVESS was created in the 1980s to monitor seasonal trends in influenza and respiratory syncytial virus (RSV). In 2007, data collection for rhinovirus, enterovirus, and human metapneumovirus began.

https://www.cdc.gov/surveillance/nrevss/index.html

- It is no longer necessary for labs to report testing data to the National Respiratory and Enteric Virus Surveillance System (NRVESS).
- The WSLH is now reporting this data electronically to NREVSS for all labs in Wisconsin that report to WSLH.
Summary of Surveillance Activities

RIDT Sites
• Confirm the first influenza positive specimen if needed.

Hospitalized Patients
• Limit to one specimen per week

Enrolled Regional Surveillance Sites
• Send the first 1 to 2 specimens/week

Student Health
• 3 specimen/week

All labs: Please continue to send all out-of-season positive influenza A specimens (e.g. June-September).
Your participation in the Wisconsin surveillance system is **vital** to monitor for emerging novel strains with pandemic potential and other pathogens that impact community health.
WSLH Surveillance Coordinators
Erik Reisdorf
Virology Lab-Team Lead
_erek.reisdorf@slh.wisc.edu

Mary Wedig
Electronic Reporting Coordinator
mary.wedig@slh.wisc.edu

P: 1-800-862-1013