A PEEK BEHIND THE CURTAIN

A DESCRIPTION OF TESTING MODALITIES INCLUDING STRENGTHS, WEAKNESSES, AND APPROPRIATE UTILIZATION FOR BACTERIAL IDENTIFICATION IN THE CLINICAL MICROBIOLOGY LABORATORY

Blake W. Buchan, PhD, D(ABMM) Associate Professor, Pathology Associate Director, Clinical Microbiology The Medical College of Wisconsin

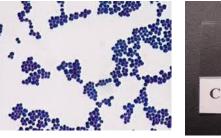
DISCLOSURES

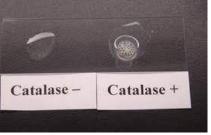
No relevant disclosures

OBJECTIVES

- Provide an overview of the diversity and complexity of laboratory testing
- Describe current culture-based and culture-independent methods used for bacterial identification
- Understand strengths and weakness of each approach

AN ANALOGY


WHAT ARE OUR "UTENSILS"


Culture-dependent

- Require pure isolate (viable)
- Non-targeted (hypothesis-free)

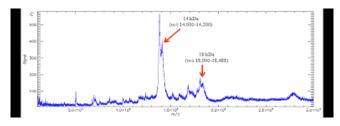
Biochemical tests


- Oldest approach
 - ID based on physiologic or metabolic characteristics of an organism

Culture Independent

WHAT ARE OUR "UTENSILS"

Culture-dependent


- Require pure isolate (viable)
- Non-targeted (hypothesis-free)

Biochemical tests

- Oldest approach
 - ID based on physiologic or metabolic characteristics of an organism

Mass spectrometry (MALDI-ToF MS)

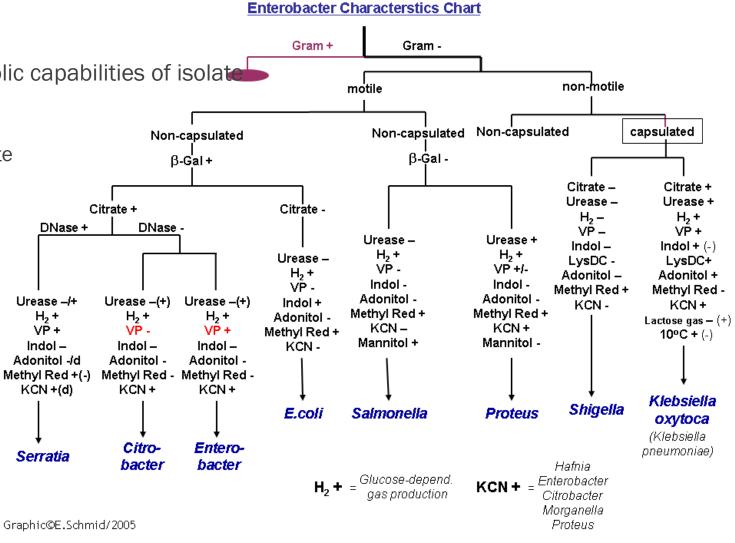
- Adopted within last decade
 - ID based on analysis of cellular peptides

Culture Independent

- Performed directly on specimen
- Targeted (hypothesis-based)

Nucleic acid amplification tests (NAATs)

- Targeted detection of short genetic sequence unique to specific organism
 - Singleplex & Multiplex PCR, Microarray
 - "Hypothesis-based"


Nucleic acid sequencing tests

- Targeted (16s rRNA)
- Non-targeted (mNGS)
 - "Hypothesis-free"

Biochemical identification

- Identification based on "global" metabolic capabilities of isolate
 - Individual tubes, single substrate (+/-)
 - Requires <u>pure</u>, <u>metabolically active</u> isolate

Biochemical identification

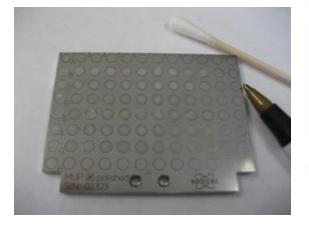
- Identification based on "global" metabolic capabilities of isolate
 - Individual tubes, single substrate (+/-)
 - Requires <u>pure</u>, <u>metabolically active</u> isolate

Biochemical identification

Identification based on "global" metabolic capabilities of isolate

bioMérieux Customer: Micro Lab	Microbiology Chart Report	Printed May 11, 2019 20:03 PKT
Patient Name:		Patient ID:
Location:		Physician:
Lab ID: 0091		Isolate Number: 1

Organism Quantity: Selected Organism : Francisella tularensis

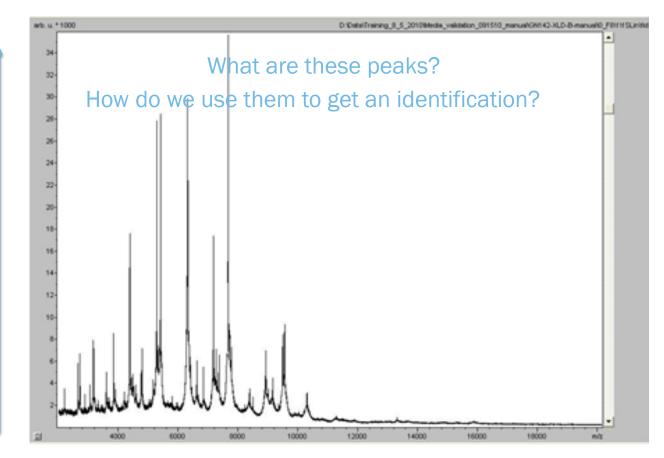

Identification Information				Analysis Time: 9		9.95 h	9.95 hours Francisella tularensis			Status: Final		Final					
			<u> </u>	92% Probability						Franc							
Sele	cted Organ	ism					Bionumber	:		00020	00100	00012	200				
DA	nalysis Mes	sage	s				Confirm by s Highly patho										
Bio	chemical	Deta	ails														
2	APPA	-	3	ADO	-	4	PyrA	-	5	IARL	-	7	dCEL	-	9	BGAL	-
10	H2S	-	11	BNAG	-	12	AGLTp	-	13	dGLU	-	14	GGT	+	15	OFF	-
17	BGLU	-	18	dMAL	-	19	dMAN	-	20	dMNE	-	21	BXYL	-	22	BAlap	-
23	ProA	-	26	LIP	-	27	PLE	-	29	TyrA	+	31	URE	-	32	dSOR	-
33	SAC	-	34	dTAG	-	35	dTRE	*	36	CIT	-	37	MNT	-	39	5KG	-
40	ILATK	-	41	AGLU	-	42	SUCT		43	NAGA	-	44	AGAL		45	PHOS	-
46	GlyA	+	47	ODC	-	48	LDC		53	IHISa	-	56	CMT	+	57	BGUR	
58	0129R		59	GGAA	-	61	IMLTa		62	ELLM		64	ILATa	-			

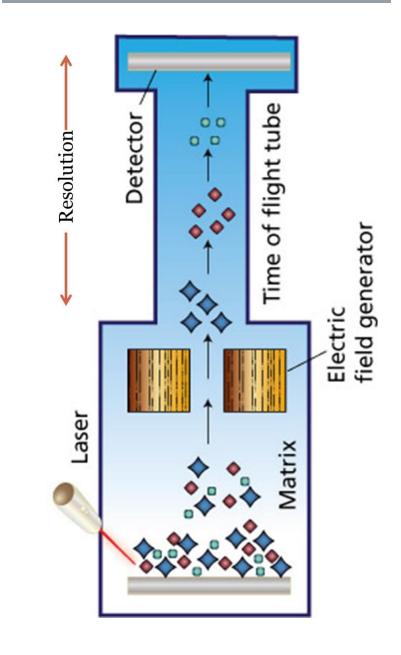
Limitations

- Non-reactive organisms
- Fastidious organisms
- Limited "reference" library

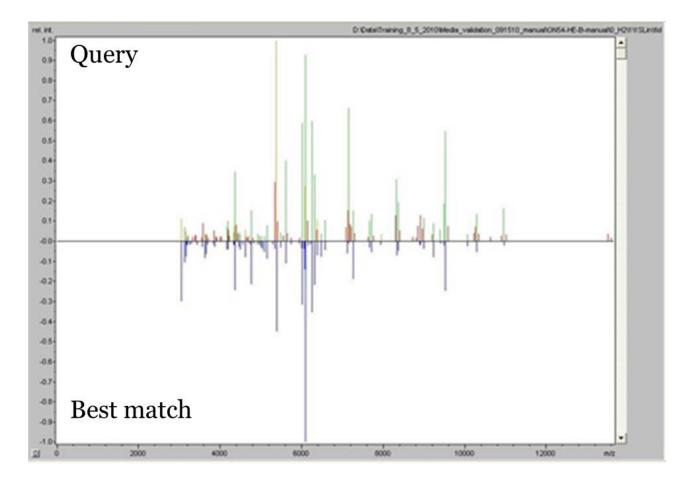
Mass spectrometry (MALDI-ToF MS)

- Identification based on <u>specific</u> (ribosomal) protein signature
 - Introduced ~2010 as FDA-cleared bacterial identification system
 - Requires <u>pure isolate</u>





Mass spectrometry (MALDI-ToF MS)


Identification based on <u>specific</u> (ribosomal) protein signature

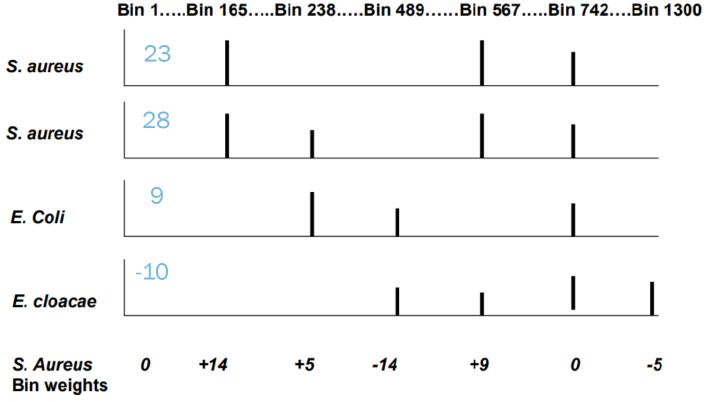
Mass spectrometry (Bruker)

Identification based on <u>specific</u> (ribosomal) protein signature

Comparison of peaks

- 1. Reference vs. sample
- 2. Sample vs reference
- 3. Amplitude

Score


- 1. Numeric 1-10
- 2. Multiply
- 3. Log convert

Criteria

- 1. >2.0 \rightarrow Species ID
- 2. 1.7-2.0 → Genus ID
- 3. <1.7 \rightarrow Unreliable

Mass spectrometry (Vitek)

Identification based on <u>specific</u> (ribosomal) protein signature

Comparison of peaks

1. Reference vs. sample

Score

- 1. Each peak assigned "bin"
- 2. Bins weighted
- 3. Add total score

Criteria

- 1. Score/Max score
- 2. Report as "% confidence"

Depth of library (more isolates) captures diversity \rightarrow better scores

- Vitek MS
 - Floor instrument
 - Single use disposable plate
 - 48- spot (3 plates /run)
 - CPU with spectra analysis software
 - "% confidence score"
 - Easily integrated with Vitek 2 AST
 - FDA-cleared for ~400 microbe species
 - 207 mold/yeast, 16 Nocardia, 39 mycobacteria
 - Average of <u>40 spectra/species</u>
 - E. coli: 437 strains, 681 spectra
 - S. aureus 348 strains, 456 spectra
 - Weirdobacter spp?

- Maldi Biotyper CA
 - Benchtop instrument
 - Reusable steel target plate
 - 48- or 96-spot
 - CPU with spectra analysis software
 - Requires interface with AST system
 - Collapse/cross-walk of IDs
 - FDA-cleared for -350 microbes
 - 40 yeasts, 5 Nocardia, 0 Mycobacteria
 - <u>Separate libraries</u> for AFB, Mold, BT agents
 - "RUO" library double in size

Workflow comparison

Biochemical vs MALDI-ToF MS

Wound, throat, urine, stool 24h

Primary culture What's significant?

Subculture

Adequate inoculum

Gram stain

12-24h

Phenoptypic ID GN, GP, Strep, Ana

60-72 h

Non-reactive bacteria? Miss-read Gram stain? Cost?

Workflow comparison

Biochemical vs MALDI-ToF MS

Wound, throat, urine, stool Primary culture What's significant?

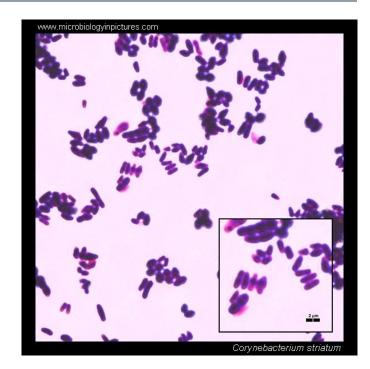
24h

24 h

2 min

Non-reactive bacteria? Miss-read Gram stain? Cost?

Performance/accuracy (n = 980 isolates)


Organism group and identification parameter (isolate data)	MALDI-TOF MS identification (no. of isolates [%])	Routine biochemical phenotypic identification (no. of isolates $[\%])^d$	P value ^e
All isolates ($n = 980$; 42 genera, 92 species)			
Genus correct	968 (98.8)	960 (98.0)	NS
Species correct	902 (92.0)	814 (83.1)	< 0.01
Major error	1 (0.1)	16 (1.6)	< 0.01
Minor error	16 (1.6)	14 (1.4)	NS
No identification	8 (0.8)	5 (0.5)	NS
Enterobacteriaceae ($n = 311$; 14 genera, 21 species)			
Genus correct	311 (100)	311 (100)	NS
Species correct	304 (97.7)	304 (97.7)	NS
Major error	(0)	(0)	
Minor error	1 (0.3)	7 (2.3)	0.05
No identification	(0)	(0)	
Nonfermentative Gram-negative rods ($n = 88$; 10 genera, 17 species)			
Genus correct	83 (94.3)	82 (93.2)	NS
Species correct	81 (92.0)	77 (87.5)	NS
Major error	1 (1.1)	2 (2.3)	NS
Minor error	(0)	1(1.1)	NS
No identification	2 (2.3)	4 (4.5)	NS

Major error = incorrect genus Minor error = incorrect species

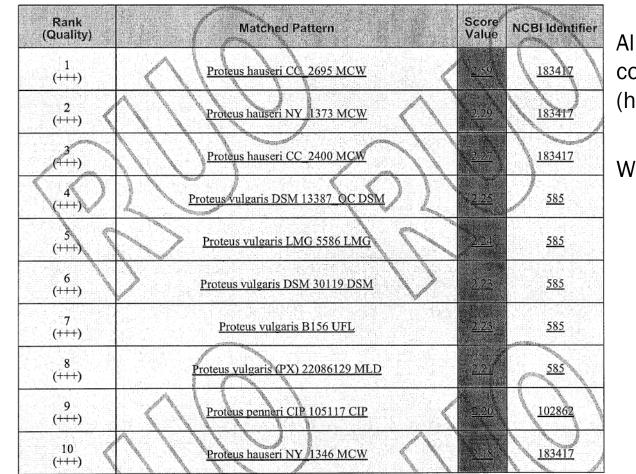
Performance/accuracy (n = 980 isolates)

	MALDI-TOF MS	Routine biochemical	
Organism group and identification parameter (isolate data)	identification (no. of isolates [%])	phenotypic identification (no. of isolates $[\%])^d$	<i>P</i> value ^{<i>e</i>}
Gram-positive cocci in cluster ($n = 261$; 2 genera, 9 species) ^b Staph, Rothia			
Genus correct	261 (100)	259 (99.2)	NS
Species correct	246 (94.3)	165 (63.2)	< 0.01
Major error	(0)	2 (0.8)	NS
Minor error	1 (0.4)	(0)	NS
No identification	(0)	(0)	
Gram-positive cocci in chains ($n = 165$; 2 genera 16 species) ^c			
Genus correct	163 (98.8)	165 (100)	NS
Species correct	140 (84.8)	145 (87.9)	NS
Major error	(0)	(0)	
Minor error	12 (7.3)	3 (1.8)	0.03
No identification	2 (1.2)	(0)	NS
Miscellaneous bacteria ($n = 94$; 12 genera, 17 species)			
Genus correct	91 (96.8)	83 (88.3)	0.03
Species correct	79 (84.0)	76 (80.9)	NS
Major error	(0)	11 (11.7)	< 0.01
Minor error	(0)	$1(1.1)^{\prime}$	NS
No identification	3 (3.2)	1 (1.1)	NS

- "Corynebacterium spp."
- Gram-positive, catalase positive bacilli
 - ~100 species of Corynebacterium
 - Many other "coryneform" genera with similar appearance
 - (Dermabacter, Arthrobacter, Brevibacterium)
- Common skin commensal
 - Rarely associated with infection \rightarrow frequently considered skin contaminant
 - Not included in phenotypic libraries
 - Difficult to discriminate species based on spot biochemicals

"Corynebacterium spp."

- MALDI enabled easy reporting and accurate ID \rightarrow recognition of important associations
 - C. macginleyi → conjunctivitis
 - C. urealyticum \rightarrow urinary tract infection (stones)
 - C. kroppenstedtii \rightarrow granulomatous mastitis
 - C. *tuberculostearicum* \rightarrow wound infection
 - Turicella otididis \rightarrow otitis media
- Policy change to auto report these species and AST when isolated from appropriate sources
 - Other Corynebacterium spp reported at "normal skin flora"


Do we still need biochemical tests?

	MALDI	Biochemical
Breadth of IDs	>1,000	200-300
Accuracy (species)	>95%	85%
Time to result	30 sec.	12-24 h
Cost	\$0.25	\$8.00
Gram-stain dependence	No	Yes

Over-reliance

- <u>PT survey</u> Simulated urine culture containing GNR
- MALDI-ToF result

All "top 10" results have confidence scores >2.0 (high confidence)

We reported "P. hauseri"

Over-reliance

- <u>PT survey</u> Simulated urine culture containing GNR
- Intended answer: Proteus vulgaris

Table 1. Bacterial Identification

Total Responses Identification	Referees (LABS	73) <mark> </mark>	Participants (. LABS	2043) %
Proteus vulgaris	50	68.5	1066	52.2
Proteus sp.	17	23.3	510	25.0
Gram-negative bacilli, Enterobacteriaceae	-	-	2	0.1
Gram-negative bacilli, aerobic	-	-	11	0.5
Consensus for correct identification of organism	67	91.8	1589	77.8
Unintended:				
Proteus penneri	2	2.7	116	5.7
Proteus hauseri	4	5.5	324	15.9

Over-reliance

- <u>PT survey</u> Simulated urine culture containing GNR
- Intended answer: Proteus vulgaris

Table 2. Result by Method

% of Laboratory Designation	
Proteus Proteus Proteus Proteus Proteus	
System LABS vulgaris sp. penneri hauseri b	

API	44	59.1	31.8	6.8	-
BD Phoenix	103	77.7	20.4	1.0	
Biochemical Methods	41	34.1	29.3	-	4.9
Bruker MALDI	341	65.1	21.1	0.3	12.9
MicroScan	<u>ب</u> 413	92.3	5.6	1.9	-
Vitek 2	` 697	3.0	44.0	13.3	38.2
Vitek MS MALDI	317	91.2	6.9	0.9	0.6

Over-reliance

- <u>PT survey</u> Simulated urine culture containing GNR
- Acknowledged limitations (the "fine print")

Proteus hauseri NY_1373 MCW	Species hauseri / penneri / vulgaris of the genus Proteus have very similar patterns: Therefore distinguishing their species is difficult.
Proteus penneri CIP 105117 CIP	Species hauseri / penneri / vulgaris of the genus Proteus have very similar patterns: Therefore distinguishing their species is difficult.
Proteus vulgaris (PX) 22086129 MLD	Species hauseri / penneri / vulgaris of the genus Proteus have very similar patterns: Therefore distinguishing their species is difficult.

	이 이 것 같은 것 같아요. 것 같아요. 방법에 가격했는 것이 같은 것은 것은 것이 없는 것이 없는 것이 없다. 것 같아요. 한 것 같아요.
Escherichia coli DSM 682 DSM	closely related to Shigella / Escherichia fergusonii and not definitely
Escherichia con DSW 062 DSF	distinguishable at the moment

Streptococcus oralis NRZ 40923	closely related: The result may be commined by a further test, e.g. one test of
	optochin test, according to standard clinical microbiological practice.

Pseudo-outbreak

- Mycobacterium chimera
 - NTM related to *M. avium/intracellulare*
 - Rarely recognized as cause of human infection (poorly differentiated form MAC)
 - 2015 \rightarrow Identified as cause of indolent infections following open chest surgeries
 - Linked to heater-cooler units used during surgery

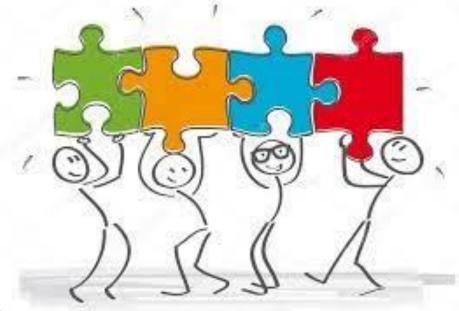
Spring 2021 - IPAC identified several patients with "M. chimera" infection at community hospital

Age	Primary Problem	Specimen Type	Collected	Collection Department	Pathogen (A)
73 Y	Pulmonary nodules (Principal Hospital Problem)	BAL (Bronchial Alveolar Lavage)	04/21/2021 0929	SJH OR	Mycobacterium chimaera (m. intracellular group)
83 Y	COPD exacerbation (*) (Admission Diagnosis)	BAL (Bronchial Alveolar Lavage)	04/08/2021 0836	SJH OR	Mycobacterium chimaera (m. intracellular group)
	Microscopic polyangiitis (*) (Principal Hospital Problem)	BAL (Bronchial Alveolar Lavage)	03/15/2021 0959	SJH INTENSIVE CARE	Mycobacterium chimaera (m. intracellular group)

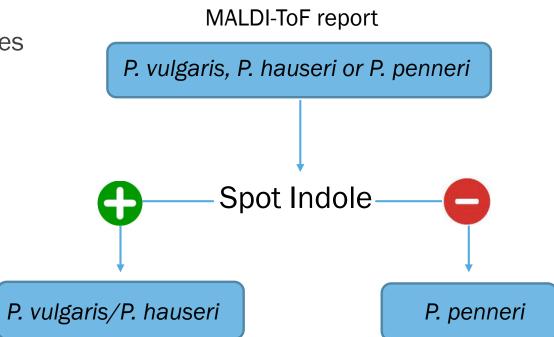
Addressing the changes

Modify reporting to:

- Accommodate strengths and limitations of MALDI-ToF
- Help providers interpret *"new"* organisms


Undifferentiated species: "M. intracellulare/chimera"

Increased accuracy: Bacterioides ovatus (Bacterioides fragilis group)


<u>Updated taxonomy</u>: Cutibacterium acnes (Propionibacterium acnes)

Conclusion

- Be aware of limitations!
- Align your LIS reportables with MALDI-ToF capabilities
 - Don't report species that cannot be differentiated
- Build algorithms to include biochemical tests

Clinical picture MALDI Biochems Epidemiology

BACK FOR A SNACK

Pure isolate "Is this BBQ or teriyaki?"

Primary specimen "What is in this?" "Does this contain onions?"

Molecular tests

- Targeted
 - Amplified "PCR" tests
 - Single-target (SARS-CoV-2, MRSA)
 - Multiplex (Respiratory virus panel)
 - Quantitative (HIV, CMV, etc.)
- Non-targeted
 - 16S rRNA sequencing
 - NGS

FAST, Sensitive, Inexpensive (relatively)

Biased!

Slow, less sensitive, Expensive (relatively)

Unbiased!

Targeted

- Gene Xpert (Qualitative RT-PCR)
 - 1-4 targets, 40-90 min TAT.
 - SA/MRSA
 - Cdiff
 - Sars/Flu
 - MTB

On-demand, Sample-to-answer, Detected/Not detected

Xpert benefits

Cdiff

Eastwood et. al, JCM 2009

• <u>The need</u>: Rapid result, high NPV to guide specific intervention

	Rapid A	Antigen tests	
	Assay	Sensitivity (%) (95% CI) ^a	Specificity (%) (95% CI) ^a
, C	Remel Xpect	68.8 (59.9–76.8)	99.4 (98.2–99.9)
Toxin	Techlab Tox A/B Quik Chek	74.4 (65.8–81.78)	98.9 (97.6–99.7)
	Premier Immunocard A + B	68.8 (59.9–76.8)	93.0 (90.4–95.2)
GDH	Techlab C. diff Chek-60	87.6 (72.4–93.0)	94.3 (91.7–96.2)

		of spe resul		ns	% sensitivity	% specificity
Test	TP	FP	TN	FN	(CI)	(CI)
Portrait	109	31	398	2	98.2 (93-99)	92.8 (89-95)
Gene Xpert	58	18	199	0	100 (93-100)	(91.7 (87-95)
GeneOhm	37	2	129	1	97.4 (86-99)	98.5 (94-99)
Illumigene	14	4	77	1	93.3 (68-99)	95.1 (87-98)

Buchan et. al, JCM 2012

*14/18 FP positive by alternative PCR test

Xpert benefits

Cdiff

Positive impact of high sensitivity – "I believe the result!"

Clostridium difficile Outcomes at	Froedtert Hospita	վ	
	EIA , n=79	PCR , n=87	P-value
Duration of antibiotic therapy in days, mean (SD)	2.31 (4.45)	0.88 (2.48)	0.007
Diagnostic test performed per patient, mean (SD)	2.73 (0.52)	1.16 (0.67)	<0.001
Duration of special isolation in days, mean (SD)	1.46 (3.81)	0.62 (3.30)	0.13

With 2 h TAT, C. difficile-specific therapy often held until result is available

Xpert benefits

- Cdiff
 - Negative impact of high sensitivity "Is this a clinically significant finding"

Evidence

- Colonization: 5%-15% asymptomatic carriage (up to 57% in LTAC patients)
 - Therapy not effective at eliminating spores, negative impact of unnecessary abx
- Test of Cure: Detection of residual Cdiff DNA following treatment/resolution of symptoms
- Quality metrics: Reported as Hospital Acquired Infection (HAI) if initial detection >3 days from admission

How do we reap the benefits of high sensitivity and mitigate the harm? (*Right patient, Right time, Right test*)

Xpert Cdiff utilization

- Right patient: decision support
 - Automatic screen for common contraindications
 - BPA for patients who have received laxatives or enema in past 24 h

Remove the	following orde	rs?			
Remove		Кеер	CLOSTRIDIU	I DIFFICILE NUCI	LEIC ACID AMPLIFIED TEST
			Once First occurrent	e Today at 0841	
Acknowledge	e Reason				

Xpert Cdiff utilization

- Right time: Laboratory utilization
 - Cancel repeat test orders (7-day positive, 14-day negative)

Test category	Number of tests	%
Total tests	20,526	100.0
Repeat tests ^a	1637/20,526	8.0
Initial test positive	554/1637	33.8
Repeat test positive	541/554	97.7
Repeat test negative	13/554	2.3
Initial test negative	970/1637	59.3
Repeat test positive	44/970	4.5
Repeat test negative	926/970	95.5

Summary of *C. difficile* PCR tests performed.

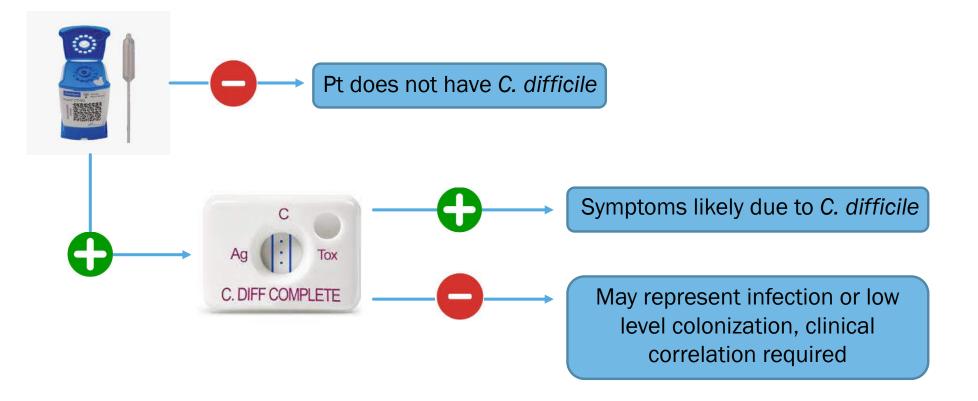
^a Tests repeated within 7 days of a previous valid test result.

Xpert Cdiff utilization

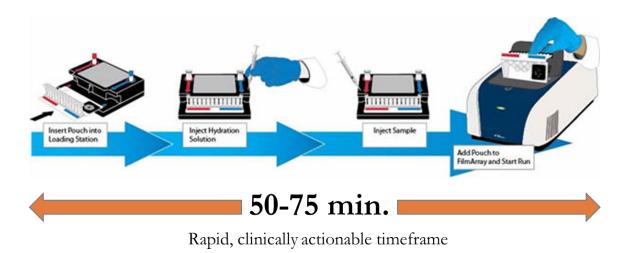
- Right time: Laboratory utilization

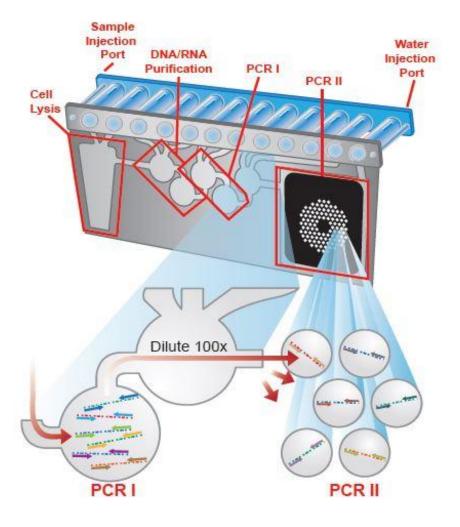
Table 2

 Cancel repeat test orders (7-day positive, 14 	l-day negative)			
Table 2 Univariate logistic regression analysis of factors contributing to discore	dant initial and repea	t test results.		
Clinicopathologic feature	Repeat negative	Repeat positive	Р	Odds ratio for repeat positive test (95% CI)
Number	248	24	NA	NA
Age, average	59	55	0.37	0.99 (0.96-1.01)
Gender, Male	130/248 (52.4%)	12/24 (50%)	0.82	0.91 (0.39-2.1)
History of C. difficile (PCR confirmed) in 60 days preceding test	8/248 (3.2%)	10/24 (41.7%)	< 0.001	18.97 (6.64-54.17)
Presence of diarrhea at time of test	220/248 (88.7%)	22/24 (91.7%)	0.66	1.40 (0.31-6.27)
Fever (>38 °C) at time of test	39/248 (15.7%)	5/24 (20.8%)	0.35	1.65 (0.57-4.77)
Leukocytosis (>11,000 leukocytes/µL) at time of test	106/248 (42.7%)	9/24 (37.5%)	0.80	1.12 (0.46-2.69)
Received any antibiotic therapy in 14 days preceding test	215/248 (86.7%)	15/24 (62.5%)	0.003	0.255 (0.10-0.63)
Received empiric therapy ^a for C. difficile in 7 days preceding test	34/248 (13.7%)	3/24 (12.5%)	0.85	0.88 (0.25-3.12)
History of laxative use within the last week (%)	100/248 (40.3%)	9/24 (37.5%)	0.76	0.88 (0.37-2.08)
Average length of stay in days (range)	8.67 (0-67)	4.14 (0-13)	0.007	0.86 (0.78-0.96)

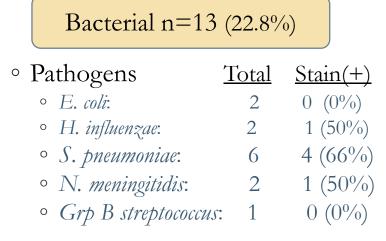

^a Metronidazole or oral vancomycin.

Xpert Cdiff utilization


- Right test(s): Algorithmic approach
 - Use of sensitive initial "screen" followed by specific "confirmation"
 - Aids in reporting only cases with high likelihood of clinical significance



Targeted


- BioFire (Amplified, miniturized-singleplex)
 - 18-35 targets, 45-75 min
 - Meningitis/Encephalitis
 - Respiratory virus
 - *new* Pneumonia (bacterial and viral)

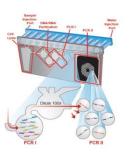
BioFire ME Panel

Tested 751 CSF – 57 (7.5% positive)

- Gram Stain
 - **46.2% sensitive** (6/13)

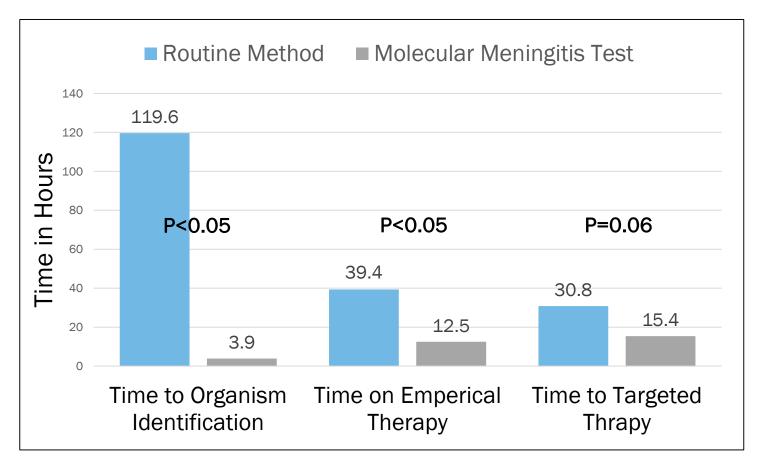
• 0/4 S. pneumo grew in CSF culture

- CSF culture
 - **15.4% sensitive** (2/13)


• 1/2 N. meningitidis, 1/2 H. influenzae

	Viral n=39 (68.4%)					
0	Pa	thogens	<u>Total</u>			
	0	HSV-1	5			
	0	HSV-2:	7			
	0	CMV:	1			
	0	VZV:	8			
	0	Enterovirus:	10			
	0	HHV-6	9			

- ° Dual-positive
 - \circ CMV + HHV-6
 - Untreated AIDS
 - CMV retinitis/encephalitis


Fungal n=5	5 (8.8%)	
• Pathogens	<u>Total</u>	<u>Stain(+)</u>
• Cryptococcus sp:	5	4 (80%)

- CSF culture
 80.0% sensitive (4/5)
- CSF antigen
 100% sensitive (5/5)

BioFire ME Panel

Positive impact

- Reduced exposure to unnecessary abx
 - Toxicity, MDR, *C. difficile* disease

• Reduce admission rate for Enterovirus

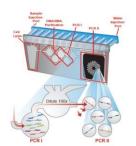
- Common, self-limited cause of CA meningitis
- Save \$3,000 per positive patient <u>not</u> <u>admitted</u>
 - Robinson et al. Pediatr Infect Dis J 2002

• Cost neutral

- \$239.63 (SOC) vs. \$239.14 (FA-ME)
 - SOC includes multiple Dx tests (Culture, multiple viral PCR), labor, unnecessary Abx
 - Soucek et al. J. Pharm Practice 2017

BioFire ME Panel

Drawbacks – What's missing?


Characteristic features of common causes of bacterial meningitis

Not on ME Panel

- S. aureus
- CoNS
- Enterococcus
- P. aeruginosa
- A. baumannii
- Enterobacterales other than E. coli K1
- C. acnes

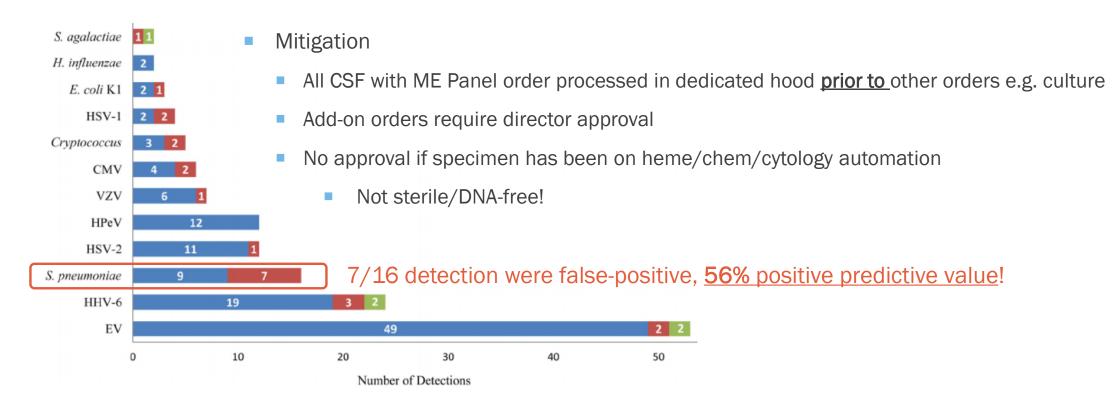
Organism	Site of entry	Predisposing conditions
Neisseria meningitidis	Nasopharynx	Usually none, rarely complement deficiency
Streptococcus pneumoniae	Nasopharynx, direct extension across skull fracture, or from contiguous or distant foci of infection	All conditions that predispose to pneumococcal bacteremia, fracture of cribriform plate, cochlear implants, defects of the ear ossicle (Mondini defect)
Listeria monocytogenes	Gastrointestinal tract, placenta	Defects in cell-mediated immunity pregnancy, liver disease, alcoholism, malignancy
Coagulase-negative staphylococci	Foreign body	Surgery and foreign body, especially ventricular drains
Staphylococcus aureus	Bacteremia foreign body, skin	Endocarditis, surgery and foreign body, especially ventricular drain
Gram-negative bacilli	Various	Advanced medical illness, neurosurgery, ventricular drains, disseminated strongyloidiasis
Haemophilus influenzae	Nasopharynx, contiguous spread from local infection	Diminished humoral immunity

- Not recommended for traumatic or surgical infections
- Not recommended for infections with indwelling hardware

BioFire ME Panel

Drawbacks

- High sensitivity Susceptible to contamination
 - S. pneumoniae common in upper respiratory tract specimens and individuals





BioFire ME Panel

Drawbacks

- High sensitivity Susceptible to contamination
 - S. pneumoniae common in upper respiratory tract specimens and individuals

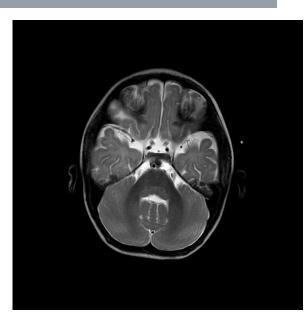
BioFire ME Panel

Drawbacks

- Qualitative, analytic result... is detection clinically significant?
 - HHV-6 \rightarrow Most common viral target detected (20-25%)
 - Latency in oligodendrocytes in CNS, monocytes, macrophage
 - Sub-clinical reactivation in <u>53%</u> of critically ill patients
 - <u>Ci-HHV-6</u> in ~1% of human population
 - HHV-6 encephalitis well described in HSCT, but <u>rare elsewhere</u>

Up to 80% of HHV-6 detections in CSF deemed to be of unlikely clinical significance

Similar may be true of other integrated herpesviruses e.g. VZV, CMV, HSV

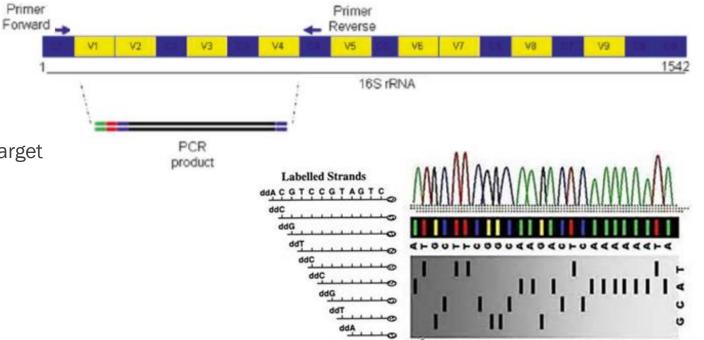


Green et al. CID 2018:67 (1 October)

BioFire ME Panel

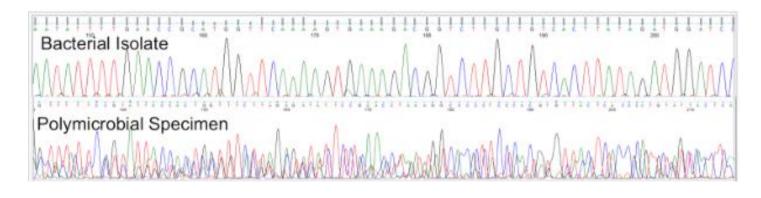
Drawbacks

- <u>Mitigation</u> Clinical and laboratory correlation
 - Assess patient risk factors (HSCT vs "community acquired" meningitis/encephalitis)
 - Cranial imaging for consistent MRI findings (bilateral hyperintensity of medial lobes)
 - Rule out ci-HHV-6 (dPCR)
 - Plasma HHV-6 viral load
 - <10,000 copies/mL encephalitis extremely rare</p>



Non-Targeted (sequencing)

- "16s"
 - Target <u>bacterial</u> 16s rRNA
 - PCR-based amplification of 500-700 bp target
 - Sanger sequence analysis of amplicon


In <u>theory</u>, this enables...

- Unbiased "hypothesis-free" identification of bacteria in a specimen
 - Independent of culture viability (antibiotic-exposed, fastidious)
- Sensitivity similar to targeted PCR
- "Rule out" an infectious etiology

Non-Targeted (sequencing)

- Caveats a plenty!
 - Specimen
 - Monomicrobial (sterile tissue/fluid)
 - Fresh (non-FFPE)

- Sensitivity
 - Targeted PCR > 16s
 - Culture?

Broad-Range 16S rRNA PCR Compared With Culture

N=394 sterile fluids			Culture	
		+		_
16S	+	86 (21.8%)		18 (4.6%)
	-	19 (4.8%)		271 (68.8%)

Species in culture-positive, 16S -negative specimens ^b	No.
Propionibacterium acnes	11 ^c
Staphylococcus lugdunensis	1
Staphylococcus aureus	2
Staphylococcus capitis	1
Staphylococcus epidermidis	3
Staphylococcus sp	1
Total	19

^c Four cultures became positive after >10 days

Rampini et al. CID 2011:53 (15 December)

Non-Targeted (sequencing)

- Caveats a plenty!
 - <u>Culture-negative</u> specimens
 - Sterile fluids/tissues \rightarrow 42% sensitive
 - PJI synovial fluid \rightarrow 35% sensitive

Low organism burden \rightarrow 16s has relatively high LoD Can <u>not</u> be used to rule out infection!!!!!!!

Culture negative, high index of suspicion for bacterial infection

Specimen type	Number of positive specimens	Number of negative specimens	Percent positive	Total number of specimens
Fresh tissue	——— Sequenc	ce result ——		
Microscopy positive ^a	9	5	64.3%	14
Microscopy negative	18	88	17.0%	9% 106
No microscopy result	6	22	21.4%	28
Total	33	115	22.3%	148

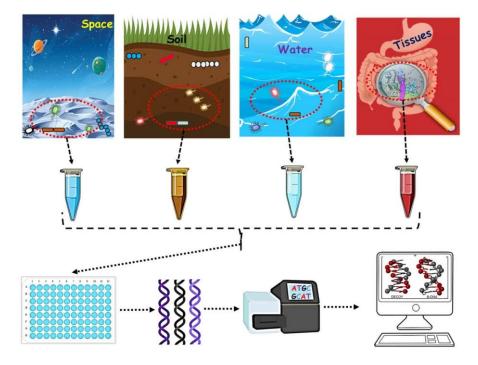
Rampini et al. CID 2011:53; Bemer et al. J Clin Microbiol 2014:52 (10); Payne et al. Can J Infect Dis and Med Microb 2016

Non-Targeted (sequencing)

- "real world" impact
 - Unregulated ordering: 163 specimens over 10 months \rightarrow 16s and culture

RESULT	NUMBER	PERCENT OF TOTAL	CLINICALLY VALUABLE RESULT FROM SEQUENCING	•
Specimens tested by sequencing and culture	163	100%	N/A	
Negative by both tests	86	52.8%	No	
Culture and sequencing positive for same organism (culture result available before sequencing)	34	20.9%	No, culture result was obtained first	
Sequencing positive only for a previously diagnosed infection (patient was being treated, which prevented growth on culture)	7	4.3%	No, infection had already been identified and effective treatment initiated	
Specimens with multiple organisms identified by culture and sequencing was indeterminate	5	3.1%	No, sequencing does not work if multiple organisms are present	
Culture positive, sequencing negative	22	13.5%	No	
Sequencing positive, culture negative (patient was on antibiotics that would prevent bacterial growth in culture)	7	4.3%	Yes Maybe? Narrow Abx based on ID	
Sequencing positive, culture negative	1	0.6%	Yes	

Conclusions


- <5% of cases provide clinically useful/actionable information
- Does <u>not</u> provide susceptibility result e.g. MRSA vs MSSA
- Long TAT, may report results after completing empiric therapy
- Additional cost to hospital is \$75-100k

Non-Targeted (sequencing)

- Test utilization Maximize benefits of expensive and low yield test
 - "Freeze and hold"
 - Freeze portion of tissue/fluid until culture completed
 - Preference for stain positive (gram or histology)
 - If culture-negative, these are good candidates for 16s
 - Consideration for source (sterile vs non-sterile)
 - Non-sterile source, polymicrobial stain will <u>not</u> generate useful information
 - Recommend specific PCR rather than general 16S
 - If specific concern for S. aureus, Toxoplasma, Pneumocystis, MTB, etc. consider specific PCR
 - Increase sensitivity and specificity!

Non-Targeted (sequencing)

- Metagenomic NGS (mNGS), the "Whole enchilada"
 - Truly unbiased sequencing approach
 - bacterial, viral, fungal, <u>human</u>

In *theory*, this enables...

- Unbiased "hypothesis-free" identification of any/all organisms in a specimen
- Sensitivity similar to targeted PCR
- "Rule out" an infectious etiology

mNGS

- Caveats a plenty!
 - Interpretation
 - Non-quantitiative
 - Relatively sensitive
 - Non-targeted

"Cast a wide net and you catch a lot of fish"

- Interfering signals
 - Human DNA accounts for >90% of nucleic acid in blood & tissue specimens
 - Reduces sensitivity for low abundance microorganisms
 - Too few microorganism reads to map \rightarrow poor ID or unable to ID

Deep Sequencing Results

CULTURE-INDEPENDENT IDENTIFICATION

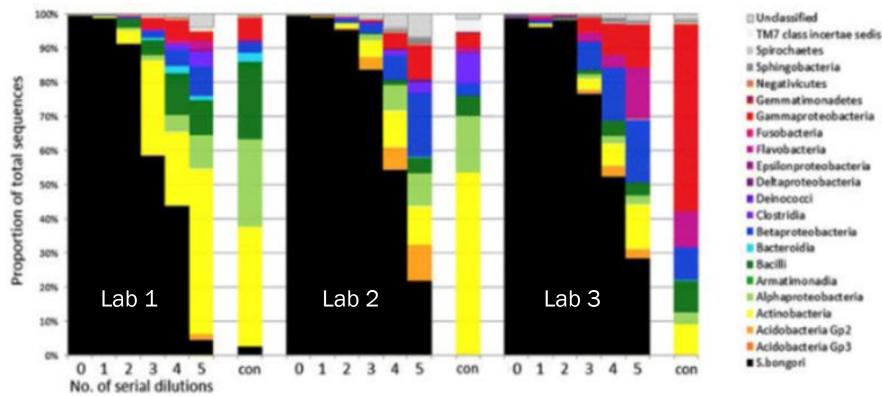
mNGS

- Caveats a plenty!
 - Lymph node culture-negative abscess
 - Sanger 16S failed, multiple bacterial sequences present

Can bugs with predominant reads be assumed to be predominant?

Are the low concentration reads significant? Contaminant?

Species name		% of total Reads	Number of Reads
Veillonella parvula/dispar/atypica		23.6	2742
No match ≥99%		22.36	2599
Fusobacterium periodonticum*		17.16	1994
Veillonella dispar/parvula*/denticariosi		10.55	1226
Streptococcus oralis		5.65	657
Prevotella nanceiensis*		5.22	607
Campylobacter concisus		2.95	343
Streptococcus parasanguinis		2.62	304
Peptostreptococcus stomatis		2.36	274
Streptococcus salivarius/vestibularis/thermophilus		2	232
Veillonella dispar*/parvula*		1.59	185
Streptococcus pseudopneumoniae/pneumoniae/mitis/	ılis	0.69	80
Rothia mucilaginosa		0.64	74
Haemophilus parainfluenzae		0.46	54
Gemella haemolysans		0.31	36
Streptococcus constellatus*/intermedius		0.31	36
Oribacterium sinus		0.25	29
Veillonella atypica		0.24	28
Gemella sanguinis		0.22	25
Fusobacterium periodonticum/nucleatum		0.22	25
Capnocytophaga sputigena		0.22	25
Prevotella melaninogenica		0.2	23
Streptococcus infantis	7	0.2	23


- Caveats a plenty!
 - Read prevalence vs true prevalence
 - What is the LoD of mNGS for various microorganisms

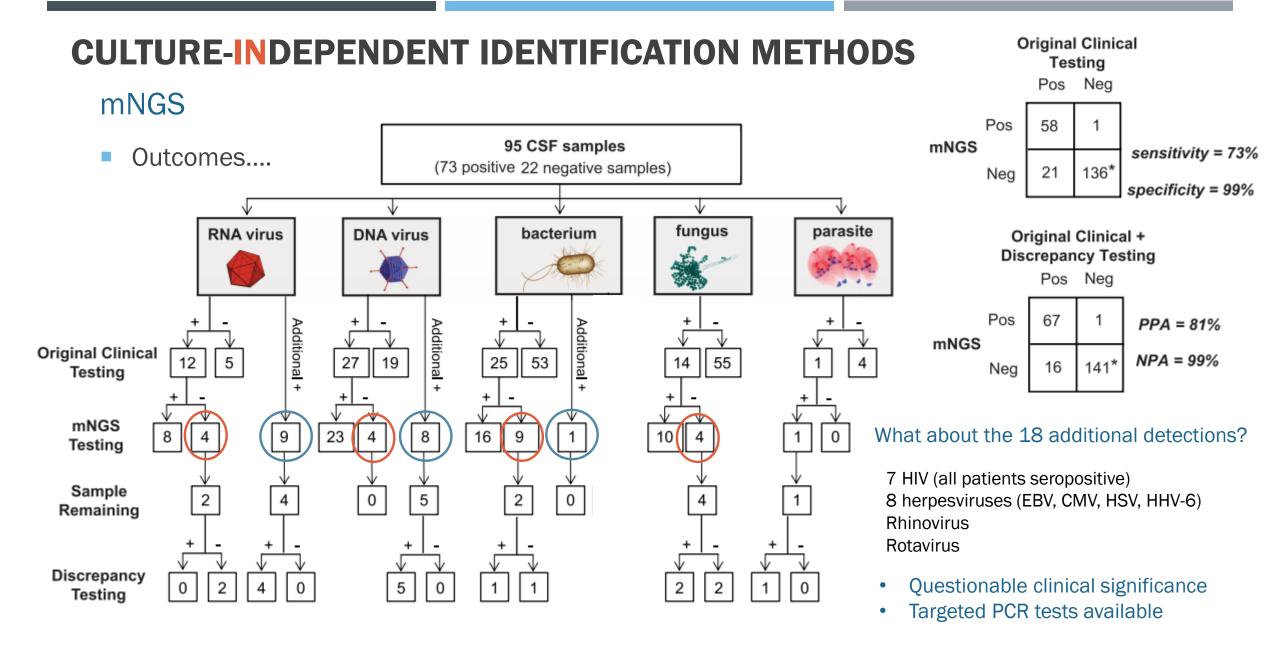

Performance metric	Method		Results
Limits of detection (LOD) ^a	Qualitative detection of PC dilution replicates by probit analysis Pathogen type DNA virus RNA virus Bacterium, gram-positive Bacterium, gram-negative Fungus, mold Fungus, yeast Parasite	Representative organism CMV HIV Streptococcus agalactiae Klebsiella pneumoniae Aspergillus niger Cryptococcus neoformans Toxoplasma gondii	LOD 14 copies/mL 313 copies/mL 10 CFU/mL 8 CFU/mL 220 CFU/mL 0.2 CFU/mL 81 organisms/mL

Table 1. Performance characteristics for the mNGS assay

Factors influencing sensitivity...genome size, susceptibility to lysis, complete genome availability

- Caveats a plenty!
 - Low level organism...or low level contamination?
- Specimens spiked with S. bongori, serially diluted (108-103 CFU/mL), sent to 3 independent labs

CONCLUSIONS

- Advances in technology has provided the laboratory with fantastic tools for identification of microorganisms (isolates and direct specimen)
- Maximal benefit relies on
 - Appropriate utilization right patient , right test, right time
 - Understanding the strengths and limitation of each approach
 - Considering all test results in the context of the clinical picture
- Clinical microbiologists have specific training and expertise in laboratory diagnostics
 - While hidden behind the curtain, we are happy to provide guidance to help provide the best patient care