2022 Updates to CLSI M100

Erik Munson Marquette University Wisconsin Clinical Laboratory Network Laboratory Technical Advisory Group

The presenter states no conflict of interest and has no financial relationship to disclose relevant to the content of this presentation.

OUTLINE

- I. Quick literature reviews relative to major revisions
- II. Objectives of webinar

Describe significant changes relevant to preexisting antimicrobial susceptibility breakpoints...

Describe significant changes relevant to antimicrobial susceptibility testing methodology...

Identify (new) organism/antimicrobial combinations for which susceptibility breakpoints now exist...

as outlined in the CLSI M100-Ed32 document.

clsi.org/m100, then scroll down a bit...

FUTZING WITH THIS...A LITTLE

$\leftarrow \rightarrow$	C 🟠 Not secure em100.edaptivedocs.net/Get	Doc.aspx?doc=CLSI%20M100%20ED32:2022&format=HT A 🏠 📬 🕻 🎼 🕁 Not syncing 🜒 …
	CLSI	
	Table of Contents	
â	- Abstract CLSI M100-	ED 2022 Performance Standards for Antimicrobial Susceptibility Testing, 32nd Edition
Home	- Committee Membership	
3	- Acknowledgment	Search within this Document
Related	Overview of Changes O	
	CLSI Breakpoint Additions/Revisions Since 2010 CLSI Archived Resources	Table of Contents < Previous Next >
Page-by- Page	 Summary of CLSI Processes for Establishing Breakpoints and Quality Control Ranges 	nclude updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07,
_	 CLSI Reference Methods vs Commercial Methods and CLSI vs U Food and Drug Administration Breakpoints 	
тос	- Subcommittee on Antimicrobial Susceptibility Testing Mission Statement	int for a obal application.
	- Instructions for Use of Tables M100-Ed32	
	- References	
Тор	 Table 1A. Suggested Groupings of Antimicrobial Agents Approv by the US Food and Drug Administration for Clinical Use That Sho Be Considered for Testing and Reporting on Nonfastidious Organis 	uld
Bottom	by Microbiology Laboratories in the United States Replaces M100	When on "HTML" view
Г 7	 Table 1B. Suggested Groupings of Antimicrobial Agents Approv by the US Food and Drug Administration for Clinical Use That Shore 	
	Be Considered for Testing and Reporting on Fastidious Organisms	
Full View	Microbiology Laboratories in the United States	Brandi Limbago, PhD
	 Table 1C. Suggested Groupings of Antimicrobial Agents Approv by the US Food and Drug Administration for Clinical Use That Shore 	uld , D(ABMM), MT(ASCP) Amy J. Mathers, MD, D(ABMM)
	Be Considered for Testing and Reporting on Anaerobic Organisms Microbiology Laboratories in the United States	by Tony Mazzulli, MD, FACP, FRCP(C)
	Sharon K. Culle	Sandra S. Richter, MD, D(ABMM), FIDSA
© 2014 Eda	ptive Technologies LLC Terms of Use	Support/Feedback Logout Powered By: Edaptive Platform

FUTZING WITH THIS...A LITTLE

\leftarrow	\rightarrow	C 🞧 🔺 Not se	ecure em10	0.edaptivedocs.net/GetDoc.aspx?	doc=CLSI%20M100%20ED32:2022&sb	sso A 🗔 tõ	\$	_ζ≡ (è 🌜 (Not syncing			
	CL	SI											
Home		Table 1A. Suggestee Use That Should Be the United States						^					
8		Group A: Includes an reporting of results f			nclusion in a routine, primary testing	panel, as well as for routin	ie						
Related		Enterobacte	rales	Pseudomonas aeruginosa	Staphylococcus spp.	Enterococcus spp.ª	a						
Page-by- Page		Ampicillin ^b		Ceftazidime	Azithromycin ^c or	Ampicillin ^d							
				Cefazolin ^f		Gentamicin Tobramycin	clarithromycin ^c or erythromycin ^c	Penicillin ^e					
ТОС		Gentamicin ^b		Piperacillin-tazobactam	Clindamycin ^c								
Тор		Tobramycin ^b			Oxacillin ^{g,h,i,j,k} Cefoxitin ^{g,h,j} (surrogate test for oxacillin)								
					Penicillin ^g	1							
Bottom					Trimethoprim-sulfamethoxazole	-							
Full View	,			ents that may warrant primary te ntimicrobial class in Group A. ^l	vely, such as when the org	ganism				. 1			
		Amikacin ^b		Amikacin	Ceftaroline ^m	Daptomycin ^{i,n}							
		Amoxicillin-clavulana Ampicillin-sulbactam	te	Aztreonam	Daptomycin ^{i,n}	Linezolid Tedizolid ^o					Ŧ		
© 2014 E	daptive	Technologies LLC Terms	of Use		•	Support/	Feedback	Logout Pov	wered By: Eda	ptive Platform			

FUTZING WITH THIS...MORE

© 2022 CLSI | © 2022 Edaptive Technologies LLC Terms of Use

FUTZING WITH THIS...MORE

What's (really exciting and) New?

THE BIG ONE

Table 2A Enterobacterales M02 and M07

Table 2A. Enterobacterales (Continued)

Test/Report	Antimicrobial	Disk	Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm			Interpretive Categories and MIC Breakpoints, µg/mL					
Group	Agent	Content	S	SDD	1	R	5	SDD	1	R	Comments
B-LACTAM CO	MBINATION AGENTS (Co	ntinued)									
В	Meropenem- vaborbactam	20/10 µg	≥18		15-17^	≤14	≤4/8	-	8/8^	≥16/8	(20) Breakpoints are based on a dosage regimen of 4 g every 8 h administered over 3 h.
В	Piperacillin- tazobactam	100/10 µg	≥25	21-24		≤ 20	≤ 8/4	16/4		≥32/4	(21) Breakpoints for susceptible are based on a dosage regimen of 3.375-4.5 g administered every 6 h as a 30-minute infusion. Breakpoints for SDD are based on a dosage regimen of 4.5 g administered every 6 h as a 3-h infusion or 4.5 g administered every 8 h as a 4-h infusion.

Method	Piperacillin	n-tazobacta	am Previous	Piperacillin-tazobactam New			
	S	l	R	S	SDD	R	
BMD	≤ 16	32-64	≥ 128	≤ 8	16	≥ 32	
DD	≥ 21	18-20	≤ 17	≥ 25	21-24	≤ 20	

CLSI M100-Ed31, 2021; -Ed32, 2022

Understanding and Addressing CLSI Breakpoint Revisions: a Primer for Clinical Laboratories

Romney M. Humphries, a, b April N. Abbott, C Janet A. Hindlerd

*Accelerate Diagnostics, Tucson, Arizona, USA
^bUniversity of Arizona, Department of Pathology, Tucson, Arizona, USA
*Deaconess Medical Center, Evansville, Illinois, USA
^dLos Angeles County Department of Public Health, Los Angeles, California, USA

ABSTRACT The Clinical and Laboratory Standards Institute (CLSI) has revised several breakpoints since 2010 for bacteria that grow aerobically. In 2019, these revisions include changes to the ciprofloxacin and levofloxacin breakpoints for the *Enterobacteriaceae* and *Pseudomonas aeruginosa*, daptomycin breakpoints for *Enterococcus* spp., and ceftaroline breakpoints for *Staphylococcus aureus*. Implementation of the revisions is a challenge for all laboratories, as not all systems have FDA clearance for the revised (current) breakpoints, compounded by the need for laboratories to perform validation studies and to make updates to laboratory information system/electronic medical record builds in the setting of limited information technology infrastructure. This minireview describes the breakpoint revisions in the M100 supplement since 2010 and strategies for the laboratory on how to best adopt these in clinical testing.

KEYWORDS CLSI, FDA, antimicrobial susceptibility testing, breakpoints

WHEN NEEDED?

MICROBIOLOGY SAYS:

Significant MIC/disk diffusion discordance when testing recent clinical isolates

Changes to CLSI-approved reference methods Recognition of a new resistance mechanism

WHEN NEEDED?

PHARMACOLOGY SAYS:

New PK/PD data indicate existing breakpoint too high/low

Recognition that antimicrobial dosage regimens used in widespread clinical practice differ substantially from dosage regimens used to establish previous breakpoints

Introduction of new formulations of antimicrobial agents, resulting in different PK characteristics

New data emerge to demonstrate the previous breakpoints were not optimal for common uses of antimicrobial agent

WHEN NEEDED?

THE BOTTOM LINE SAYS:

Specific public health need not addressed previously

Differences between CLSI and other regulatory organizations

New data demonstrate poor prediction of clinical response using previous breakpoints

WHY NEEDED?

Recognition of a new resistance mechanism New PK/PD data indicate existing breakpoint too high/low New data demonstrate poor prediction of clinical response using previous breakpoints

CLSI rationale document MR14

Piperacillin-Tazobactam Breakpoints for Enterobacterales

CLSI rationale document MR14 February 2022

Romney M. Humphries, PhD, D(ABMM), FIDSA Vanderbilt University Medical Center USA

Pranita D. Tamma, MD, MHS Johns Hopkins School of Medicine, Department of Pediatrics USA

Patrick Harris, BSc, MBBS, PhD, MRCP, DTM&H, FRACP, FRCPA University of Queensland Australia

Amy J. Mathers, MD, D(ABMM) University of Virginia Medical Center USA

Eric Wenzler, PharmD, BCPS, AAHIVP University of Illinois at Chicago USA

REVIEW OF PROCESS

CLSI voluntary consensus process

Members (clinical, industry, government) Advisors Observers (public)

Subcommittee on antimicrobial susceptibility testing

In vitro data Pharmacokinetic/pharmacodynamic (PK/PD) Clinical studies

 Establish AST methods, breakpoints (M100, M45), quality control ranges

THINGS HAPPEN OVER 30 YEARS

• Ureidopenicillin + β -lactamase inhibitor compound

 \circ β -lactamases that are inhibited

SHV TEM CTX-M

β-lactamases less inhibited
 OXA-1
 OXA-30

CLSI rationale document MR14

isolates with OXA β-lactamase had higher modal piperacillin-tazobactam MIC than isolates without (8 μg/mL vs. 2 μg/mL; *P* < 0.001)

37% of US isolates with MIC >1 μg/mL to aztreonam, ceftazidime, ceftriaxone harbored OXA β-lactamase

CLSI rationale document MR14

THEORY

In order for an antimicrobial agent to work:

Get there Get there in enough concentration Stay there long enough

Time > MIC

Once concentration is above MIC, do not observe increased rate of cidal activity with increasing concentrations of (β-lactam) antimicrobial agent

antimicrobe.org

PROBABILITY OF TARGET ATTAINMENT

 Modern methods of PK/PD evaluation determined low PTA for piperacillin-tazobactam when utilizing current CLSI breakpoints (normal renal function)

• No studies revealed high PTA with MIC > 16 μ g/mL

Table 5. Summary of Studies Investigating Piperacillin-Tazobactam PK and PD Data

Dosage	Infusion Time	MIC With ≥ 90% PTA ^a
3.375 g every 6 h	30 min	≤ 8 µg/mL ¹⁰⁻¹²
4.5 g every 6 h	30 min	≤8 μg/mL ^{12·15}
3.375 g every 8 h	4 h	≤8 µg/mL ¹⁴⁻¹⁷
4.5 g every 8 h	4 h	≤8 μg/mL ¹²⁻¹⁵
4.5 g every 8 h	4 h	≤16 µg/mL ^{12,14,17,18}
4.5 g every 8 h	3 h	≤16 µg/mL ^{12,13,18,19}

4.5g q8h dosing used in less than 10% of regimens

CLSI rationale document MR14

CLINICAL TRIAL (Study 1)

Study of ESBL bacteremia

378 patients *Escherichia coli, Klebsiella pneumoniae*S to meropenem and piperacillin-tazobactam
26 hospitals in 9 countries (mostly E. Hemisphere)

Non-inferiority study

Meropenem vs. piperacillin-tazobactam All cause 30-day mortality

JAMA **320**: 984-994; 2018

CLINICAL TRIAL (Study 1)

12.3% mortality rate with piperacillin-tazobactam; 3.7% mortality with meropenem

cultures, temperature of 38°C or less, and peripheral white blood cell count of less than or equal to 12 000/ μ L (to convert to ×10⁹/L, multiply by 0.001).

organism and 3 with *Clostridium difficile* infection.

^c Six patients with meropenem- or piperacillin-tazobactam-resistant organism and 2 with Clostridium difficile infection.

JAMA **320:** 984-994; 2018

CLINICAL TRIAL (Study 2)

Table 1. Logistic Regression Model for Assessment of 30-day Mortality for Patients Treated With Piperacillin/Tazobactam

	Bivariate Ana	lysis	Multivariate Analysis		
Variable	OR	Р	aOR	Р	
Log ₂ (MIC)	1.2 (0.9–1.6)	.20			
MIC > 16 mg/L	10.3 (2.6-41.9)	<.001	14.9 (2.8-87.2)	.002	
UTI source	0.4 (0.2-1.1)	.09	0.6 (0.2-1.8)	.3	
Charlson comorbidity score	1.6 (1.3-2.0)*	<.001	1.7 (1.3-2.2)*	<.001	

Abbreviations: aOR, adjusted odds ratio; MIC, minimum inhibitory concentration; UTI, urinary tract infection.

*Calculated for each numerical increase in Charlson Comorbidity Score.

"There's more to that story..."

Clin. Infect. Dis. 73: e3842-e3850; 2021

CLINICAL TRIAL (Study 2)

Piperacillin-tazobactam

PTZ MER

	PTZ N		M	ER		
(Sub)Population	Died	Alive	Died	Alive	Between-Group [Difference [95% CI]
mITT Analysis						
Primary analysis population	23	164	7	184	·	9 [3, 15]
Microbiologic assessable population	18	139	6	157	⊢	8 [2, 15]
Susceptible strains*						
PTZ/MER Nonsusceptible Breakpoint	13	134	6	149		5 [-1, 11]
PTZ/MER Nonsusceptible Breakpoint (excluding PTZ MIC = 16 mg/L)	11	116	6	119		4 [-2, 11]
Susceptible and Intermediate strains*						
PTZ/MER EUCAST Resistant Breakpoint	13	134	6	149		5 [-1, 11]
PTZ/MER CLSI Resistant Breakpoint	16	138	6	156		7 [1, 13]

Intervention arm

PTZ

Clin. Infect. Dis. 73: e3842-e3850; 2021

SUSCEPTIBLE DOSE DEPENDENT

Intermediate

Approach attainable blood and tissue levels but have less clinical response than "susceptible" Also implies clinical efficacy in sites where agents are physiologically concentrated

Susceptible dose dependent (multiple regimens)
 Implies that susceptibility of isolate is dependent
 on dosing regimen
 Higher dose or more-frequent dosing results in
 higher drug exposure

CLSI M100; 29th ed.; 2019

		cillin-Tazobactam PK and PD Data	
Piperacillin-tazobactam MIC, µg/mL	Dosage	Infusion Time	MIC With ≥ 90% PTA*
	3.375 g every 6 h	30 min	≤ 8 µg/mL ¹⁰⁻¹²
	4.5 g every 6 h	30 min	≤8 μg/mL ¹²⁻¹⁵
	3.375 g every 8 h	4 h	≤8 µg/mL ¹⁴⁻¹⁷
	4.5 g every 8 h	4 h	≤8 µg/mL ¹²⁻¹⁵
	4.5 g every 8 h	4 h	≤16 µg/mL ^{12,14,17,18}
	4.5 g every 8 h	3 h	≤16 µg/mL ^{12,13,18,19}
≥ 25 21-24 ≤ 20	.0 ≤ 8/4 16/4	based on a 3.375-4.5	points for susceptible are dosage regimen of g administered every 6 h as te infusion. Breakpoints for

75

CLSI rationale document MR14; CLSI M100-Ed32

SDD are based on a dosage regimen of 4.5 g administered every 6 h as a 3-h infusion or 4.5 g administered every

8 h as a 4-h infusion.

AFTERMATH I

THIS CAN GET A BIT HAIRY

Content current as of: 10/14/2021

Susceptibility Test Interpretive Criteria

The table below lists antibacterial drugs and indicates which, if any, susceptibility test interpretive criteria, also known as "breakpoints" (abbreviated as STIC), are recognized or identified by FDA for that drug.

With certain exceptions and additions, identified in the table, FDA recognizes the standard published in:

 Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2021. (CLSI M100)

fda.gov/drugs/development-resources

FLUOROQUINOLONES

Organism		Ciproflo	xacin Pr	evious	Ciprofloxacin New		
	Method	S		R	S		R
Enterobacteriaceae	BMD	≤ 1	2	≥ 4	≤ 0.25	0.5	≥ 1
P. aeruginosa	BMD	≤ 1	2	≥ 4	≤ 0.5	1	≥ 2

Organism		Levoflo	xacin Pr	evious	Levofloxacin New		
	Method	S		R	S		R
Enterobacteriaceae	BMD	≤ 2	4	≥ 8	≤ 0.5	1	≥2
P. aeruginosa	BMD	≤ 2	4	≥ 8	≤ 1	2	≥ 4

29th Edition

M100

Performance Standards for Antimicrobial Susceptibility Testing

THIS CAN GET A BIT HAIRY

Drug	Route of Administration	STIC for Drug Included in CLSI M100 Standard	Exceptions or Additions to CLSI M100 Standard	Last Updated
<u>Ciprofloxacin</u>	Oral, Injection	Yes	Yes	2/28/20
<u>Levofloxacin</u>	Oral, Injection	Yes	Yes	2/28/20

fda.gov/drugs/development-resources

THIS CAN GET A BIT HAIRY

Piperacillin Tazobactam – Injection products

f Share	y Tweet	in Linkedin	🔽 Email	🖨 Print	
---------	---------	-------------	---------	---------	--

Recognized Interpretive Criteria

	Minimum Inhibitory Concentrations (mcg/mL)		Disk Diffusion (zone diameter in mm)		06/01/2018	Y W			
Pathogen	S	I	R	S	I	R			
Enterobacteriaceae	M100 standard is recognized								

Drug	Route of Administration	STIC for Drug	Exceptions or	Last Updated
		Included in	Additions to	
		CLSI M100	CLSI M100	
		Standard	Standard	
Piperacillin and	Injection	Yes	Yes	06/26/18
tazobactam				

Content current as of:

fda.gov/drugs/development-resources

THIS WILL GET A LOT HAIRY

NEW 09/22/2021

MIC.11385 Current Antimicrobial Susceptibility Test Interpretation Breakpoints

Effective January 1, 2024, the laboratory uses current breakpoints for interpretation of antimicrobial minimum inhibitory concentration (MIC) and disk diffusion test results, and implements new breakpoints within three years of the date of official publication by the FDA or other standards development organization (SDO) used by the laboratory.

College of American Pathologists Microbiology Checklist

AFTERMATH II

2227 Wisconsin clinical *Escherichia coli* isolates

Old:	98.2% S	0.7% I	1.1% R
New:	97.2% S	1.0% SDD	1.8% R

1760 Wisconsin clinical *Proteus mirabilis* isolates

Old:	99.9% S	0.05% l	0.05% R
New:	99.9% S	0.0% SDD	0.1% R

AFTERMATH II

710 Wisconsin clinical *Klebsiella pneumoniae* isolates

Old:	96.6% S	1.0% I	2.4% R
New:	93.5% S	3.1% SDD	3.4% R

617 Wisconsin clinical *Enterobacter cloacae* isolates

Old:	88.8% S	3.1% I	8.1% R
New:	86.5% S	2.3% SDD	11.2% R
Klebsiella pneumoniae

Enterobacter cloacae

HERE'S ANOTHER BIG ONE

AMERICAN SOCIETY FOR MICROBIOLOGY

BACTERIOLOGY

Direct-from-Blood-Culture Disk Diffusion To Determine Antimicrobial Susceptibility of Gram-Negative Bacteria: Preliminary Report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group

Sukantha Chandrasekaran,^a April Abbott,^b Shelley Campeau,^a Barbara L. Zimmer,^c Melvin Weinstein,^{d,e} Lauri Thrupp,^f John Hejna,^g Lindsey Walker,^{c,g} Tracy Ammann,^g Thomas Kirn,^{d,e} Robin Patel,^h Romney M. Humphries^{a,g}

*UCLA Clinical Microbiology, University of California, Los Angeles, California, USA
*Deaconess Health System, Evansville, Indiana, USA
*Beckman Coulter, West Sacramento, California, USA
*Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
*Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
*University of California, Irvine, Irvine, California, USA
*Accelerate Diagnostics, Tucson, Arizona, USA
*Mayo Clinic, Rochester, Minnesota, USA

J. Clin. Microbiol. **56:**e01678-17

OUTCOMES

Extended duration of hospitalization Increased patient mortality Increased cost of treatment

Clin. Infect. Dis. **36:** 1418-1423; 2003 Diagn. Microbiol. Infect. Dis. **52:** 113-122; 2005

COMMENTARY

Use of Rapid Diagnostics To Manage Pediatric Bloodstream Infections? You Bet Your ASP!

Mark D. Gonzalez,^a ⁽ⁱ⁾Melanie L. Yarbrough^b

*Department of Pathology and Laboratory Services, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
*Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA

JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 1979, p. 347-350 0095-1137/79/03-0347/04\$02.00/0

Vol. 9, No. 3

Standardization of Direct Susceptibility Test for Blood Cultures

DALE FAY^{†*} and JEAN E. OLDFATHER

Riverside Methodist Hospital, Columbus, Ohio 43214

Received for publication 17 December 1978

Insufficient data are available to establish the reliability of direct disk diffusion susceptibility tests performed utilizing positive blood culture broth as inoculum. When Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 were used, 0.03 ml of turbid overnight blood culture broth was found to produce zone diameters closely approximating the size of diameters obtained by a standardized method. Results of direct (0.03 ml of inoculum) and standardized susceptibility tests were then compared for 116 positive blood cultures (1,069 individual disk comparisons). There were 1,011 test agreements (94.6%). There were also 48 (4.5%) minor discrepancies (change between sensitive and intermediate or between intermediate and resistant) and 10 (0.9%) major discrepancies (change between sensitive and resistant). The major discrepancies were randomly distributed among several organisms and antibiotics. Discrepancies occurred most frequently in the more clinically acceptable direction; i.e., in 79.3% the direct test indicted greater resistance than the standardized test. These data establish that 0.03 ml of turbid overnight blood culture broth produces results which compare closely to those obtained with standard methods, and in practice yield direct susceptibility results with a clinically acceptable level of reliability.

J. Clin. Microbiol. 9: 347-350; 1979

Used ATCC *E. coli*, *P. aeruginosa*, *S. aureus* in mock experiments to determine "optimal" inoculum for direct disk

"Prospective" [TSB aerobic (default); TSB anaerobic; Thiol] n = 116

Two drops (30 μ L) directly onto Mueller Hinton (3 planes) Everything per NCCLS guidelines (18 hours incubation)

J. Clin. Microbiol. 9: 347-350; 1979

susceptibility tests No. of Discrepancies Agree-Organism strains ments tested Major Minor E. coli 46 2 22390 Klebsiella 2 12 16 130 2 3 Proteus mirabi-8 67 lis Providencia 1 0 1 8 stuartii Citrobacter div-1 0 0 9 ersus Citrobacter 1 0 1 8 freundii Enterobacter 3 0 1 26aerogenes Enterobacter 3 2 1 24 cloacae Enterobacter 1 0 0 9 agglomerans Serratia mar-3 0 0 27 cescens P. aeruginosa 0 0 36 Pseudomonas 2 0 2 16 species Bordetella par-1 0 0 9 apertussis Acinetobacter 1 0 0 9 calcoaceticus S. aureus 12 0 0 1202 74 Staphylococcus 8 4 epidermidis 0 Enterococcus 3 1 29 Group D Strep-0 0 10 1 tococcus (not Enterococcus) Viridans Strep-0 10 0

tococcus

TABLE 2. Organisms included in the clinical

comparison of the direct and standardized

TABLE 3. Distribution of discrepancies between direct and standardized susceptibility tests by antibiotic

	No. of	Discre	pancies	
Antibiotic	compar- isons	Total	Ma- jor	Mi- nor
Ampicillin	116	4 (3.8) ^a	1	9
Carbenicillin	91	4 (4.3)	0	4
Cephalothin	116	16 (13.8)	2	14
Chloramphenicol	116	6 (5.2)	3	3
Clindamycin	25	0	0	0
Colistin	91	6 (6.6)	2	4
Erythromycin	25	0	0	0
Gentamicin	116	0	0	0
Kanamycin	116	1 (0.8)	0	1
Methicillin	25	1 (4.0)	0	1
Penicillin	25	3 (12.0)	1	2
Streptomycin	91	9 (9.9)	0	9
Tetracycline	116	8 (6.9)	1	7

Major (0.9%): shift between sensitive and resistant Minor (4.5%): shift between sensitive and intermediate shift between intermediate and resistant

J. Clin. Microbiol. 9: 347-350; 1979

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 1981, p. 696-698 0066-4804/81/110696-03\$02.00/0 Vol. 20, No. 5

Evaluation of a Direct Blood Culture Disk Diffusion Antimicrobial Susceptibility Test

GARY V. DOERN,^{†*} DAVID R. SCOTT,[‡] ABDEL L. RASHAD, AND KENNETH S. KIM Department of Clinical Pathology, University of Oregon Health Sciences Center, Portland, Oregon 97201

Received 10 April 1981/Accepted 6 August 1981

A total of 556 unique blood culture isolates of nonfastidious aerobic and facultatively anaerobic bacteria were examined by direct and standardized disk susceptibility test methods (4,234 antibiotic-organism comparisons). When discrepancies which could be accounted for by the variability inherent in disk diffusion susceptibility tests were excluded, the direct method demonstrated 96.8% overall agreement with the standardized method. A total of 1.6% minor, 1.5% major, and 0.1% very major discrepancies were noted.

Antimicrob. Agents Chemother. 20: 696-698; 1981

"Prospective" (BBL aerobic and anaerobic bottles) n = 556

Six drops (50 μ L) onto Mueller Hinton (GNR; GPC clumps) Six drops (50 μ L) onto Mueller Hinton w/blood (GPC chains) Everything per NCCLS guidelines (16-18 hours incubation)

Very Major Error:direct susceptible, reference resistant (false-susceptible)Major Error:direct resistant, reference susceptible (false-resistant)Minor Error:resistant ↔ intermediate ↔ susceptible

Antimicrob. Agents Chemother. 20: 696-698; 1981

		suscept	tibility test	t results						
	No. of discrepancies [®] for:									
Antibiotic	n = 171 Gram-negative bacilli ^e		n = Strepto	166 cocci ^r	Staphyloc microc	occi and	= 219 Totals			
Kanamycin	0, 8, 66	(56.7)	NT		NT		0, 8, 66	(56.7)		
Gentamicin	0, 1, 3	(97.7)	NT		NT		0, 1, 3	(97.7)		
Tobramycin	0, 1, 5	(96.5)	NT		NT		0, 1, 5	(96.5)		
Amikacin	0, 4, 17	(87.7)	NT		NT		0, 4, 17	(87.7)		
Carbenicillin	0, 6, 14	(88.3)	NT		NT		0, 6, 14	(88.3)		
Ampicillin	1, 3, 12	(90.6)	0, 2, 11	(92.2)	NT		1, 5, 23	(91.4)		
Cephalothin	0, 4, 50	(68.5)	0, 0, 6	(96.4)	0, 0, 0	(100)	0, 4, 56	(89.2)		
Tetracycline	0, 1, 43	(74.3)	1, 5, 15	(87.4)	1, 2, 2	(97.7)	2, 8, 60	(87.4)		
Chloramphenicol	0, 1, 13	(91.8)	0, 0, 9	(94.6)	0, 3, 3	(97.2)	0, 4, 25	(94.8)		
Erythromycin	NT		1, 1, 9	(93.4)	0, 2, 3	(97.7)	1, 3, 12	(95.8)		
Clindamycin	NT		0, 0, 6	(96.4)	0, 2, 0	(99.1)	0, 2, 6	(97.9)		
Penicillin	NT		0, 2, 14	(90.4)	0, 5, 25	(96.3)	0, 7, 39	(88.1)		
Methicillin	NT		NT		1, 11, 6	(91.8)	1, 11, 6	(91.8)		
Totals	1, 29, 223	(83.6)	2, 10, 70	(92.9)	2. 25. 39	(95.7)	5. 64. 332	(90.5)		

TABLE 1. Comparison of direct blood culture disk susceptibility test results with standardized disk susceptibility test results

Very Major Error; Major Error; Minor Error; (percentage concordance)

Antimicrob. Agents Chemother. 20: 696-698; 1981

JOURNAL OF CLINICAL MICROBIOLOGY. Sept. 1984. p. 473-477 0095-1137/84/090473-05\$02.00/0 Copyright © 1984. American Society for Microbiology Vol. 20, No. 3

Rapid Antimicrobial Susceptibility Testing of Isolates from Blood Cultures by Direct Inoculation and Early Reading of Disk Diffusion Tests

MARIE B. COYLE,^{1,2*} LEE ANNE McGONAGLE,³ JAMES J. PLORDE,⁴ CARLA R. CLAUSEN,⁵ and FRITZ D. SCHOENKNECHT³

Clinical Microbiology Division, University of Washington,¹ and University Hospital,³ Seattle, Washington 98195; Harborview Medical Center, Seattle, Washington 98104;² Seattle Veterans Administration Medical Center, Seattle, Washington 98108;⁴ and Childrens Orthopedic Hospital and Medical Center, Seattle, Washington 98105⁵

Received 13 January 1984/Accepted 24 May 1984

Disk diffusion tests, inoculated directly from positive blood cultures, were evaluated for accuracy of reading zone diameters after 4- and 6-h and overnight incubation. In comparisons with results from standard disk diffusion tests, the 4-h results were in agreement for 83% of tests with gram-positive organisms and 64% of tests with gram-negative organisms. When minor discrepancies were ignored, the 4-h readings were in agreement for 98% of the tests with gram-positive organisms and 95% of the tests with gram-negative organisms. After 6 h of incubation, 91% of the tests with gram-positive organisms and 86% of the tests with gram-negative organisms agreed with standard results. The agreement was 99% for tests with both grampositive and gram-negative organisms when minor discrepancies were excluded. Very major discrepancies occurred in two tests (0.1%) with gram-positive organisms and were not observed in tests with gram-negative organisms. The frequencies of major discrepancies were 3.5% after 4 h, 0.6% after 6 h, and 0.7% after overnight incubation. Ampicillin and cephalothin tests with Escherichia coli and Klebsiella spp. accounted for 81% of the major discrepancies in tests with gram-negative organisms. Oxacillin tests accounted for more than half of the major discrepancies in tests with staphylococci. The results of this study, which did not include the newer antibiotics, indicate that direct susceptibility tests from blood cultures read after 6 h of incubation are more reliable than 4-h results and produce less than 1% major errors in comparisons with standard susceptibility tests.

J. Clin. Microbiol. 20: 473-477; 1984

"Prospective" (aerobic and anaerobic bottles) n = 403

Swab onto Mueller Hinton (GNR) Swab onto Mueller Hinton w/blood (GPC)

Everything else per NCCLS guidelines (except read at 4 hours, 6 hours)

Very Major Error:direct susceptible, reference resistant (false-susceptible)Major Error:direct resistant, reference susceptible (false-resistant)Minor Error:resistant ↔ intermediate ↔ susceptible

J. Clin. Microbiol. 20: 473-477; 1984

Blood culture isolate	No. of	% Read after:			
blood culture isolate	isolates	4 h	6 h ^a		
Gram positive					
S. aureus	60	22	63		
Coagulase-negative staphylococci	87	3	21		
Beta-hemolytic streptococci	30	37	87		
Enterococci	21	19	52		
Pneumococci	21	10	38		
Viridans streptococci	14	0	0		
Total for gram					
positive	233	14	44		
Gram negative					
E. coli	84	52	85		
Klebsiella spp.	38	40	76		
Enterobacter spp.	12	42	92		
P. aeruginosa	11	0	64		
Others ^b	25	36	60		
Total for gram					
negative	170	43	78		

TABLE 2. Discrepancies from direct tests compared with standardized tests											
	No. of discrepancies										
Isolate type, time incubated	No. of tests	Very major (%)	Major (%)	Minor (%)	Overall agreement (%)						
Gram positive											
4 h	216	1 (0.5)	3 (1.4)	32 (14.8)	83.3						
6 h	494	0	3 (0.6)	39 (7.9)	91.4						
Overnight	1,307	1 (0.07)	8 (0.6)	65 (5.0)	94.3						
Gram negative											
4 h	361	0	17 (4.7)	114 (31.6)	63.7						
6 h	438	0	3 (0.7)	59 (13.5)	85.8						
Overnight	762	0	6 (0.8)	73 (9.6)	89.6						

J. Clin. Microbiol. 20: 473-477; 1984

IMPETUS

Direct-from-Blood-Culture Disk Diffusion To Determine Antimicrobial Susceptibility of Gram-Negative Bacteria: Preliminary Report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group

 Resistance in GNR can be multi-factorial; full phenotypic approach may be desirable

Little standardization; very few laboratories report

J. Clin. Microbiol. **56:**e01678-17

METHODS

Single site

Mock inoculation

0.5 McFarland adjusted 10² CFU inoculum BacT/Alert FA Plus Bactec Plus aerobic VersaTREK Redox 1

Isolate no.	Species	Resistance phenotype
15-05-01	Klebsiella pneumoniae	CRE (NDM-1)
15-05-02	K. pneumoniae	CRE (KPC)
15-05-03	K. pneumoniae	ESBL (CTX-M-15)
15-05-04	Proteus mirabilis	Wild type
15-05-05	Enterobacter aerogenes	Resistant to cephalosporins III, AmpC overexpression
15-05-06	Enterobacter cloacae	Wild type
15-05-07	E. cloacae	Resistant to cephalosporins III, AmpC overexpression
15-05-08	Citrobacter freundii	None
15-05-09	Escherichia coli	Plasmid for AmpC CMY-2
15-05-10	E. coli	Cefazolin resistant (mechanism not defined)
15-05-11	E. coli	Wild type
15-05-12	E. coli	ESBL
15-05-14	Pseudomonas aeruginosa	Carbapenem resistant
15-05-15	P. aeruginosa	Wild type
15-05-16	P. aeruginosa	Fluoroquinolone resistant
15-05-17	Acinetobacter baumannii	Wild type
15-05-18	K. pneumoniae	Wild type
15-05-19	A. baumannii	Carbapenem resistant (mechanism not defined)
15-05-20	P. aeruginosa	Aminoglycoside resistant
15-05-21	Serratia marcescens	SME

Pulled from instrument within 8 hours of being flagged; tested immediately

J. Clin. Microbiol. **56:**e01678-17

METHODS (CONTINUED)

- Bottles subcultured for reference disk diffusion
- Bottle contents subjected to direct disk diffusion

4 drops onto Mueller Hinton via venting needle Swabbed in three directions 35°C ambient air; 6 and 18 hours

amikacin ampicillin aztreonam cefazolin cefepime ceftriaxone ciprofloxacin ertapenem gentamicin imipenem minocycline tigecycline tobramycin ceftazidime meropenem amoxicillin-clavulate piperacillin-tazobactam trimethoprim-sulfa cefoxitin levofloxacin

Broth microdilution (in-house) final adjudicator
 J. Clin. Microbiol. 56:e01678-17

RESULTS

TABLE 3 Resolved performance of direct-from-blood-culture disk diffusion method at 18 h, by antibiotic

	No. o isolat			No. (%)	No. (%) of:			
Drug	s	R	% CA	VME	ME	mE		
Amikacin	45	13	96.7	0 (0)	0 (0)	2 (3.3)		
Amoxicillin-clavulanate	9	17	88.9	0 (0)	1 (11.1)	2 (7.4)		
Ampicillin	6	9	93.3	0 (0)	0 (0)	1 (6.7)		
Aztreonam	21	28	94.3	0 (0)	0 (0)	3 (5.7)		
Cefazolin	5	18	73.1	0 (0)	2 (40.0)	5 (19.2)		
Cefepime	41	17	91.7	0 (0)	0 (0)	5 (8.3)		
Cefoxitin	10	15	85.2	0 (0)	1 (10.0)	3 (11.1)		
Ceftazidime	25	31	89.8	0 (0)	0 (0)	6 (10.2)		
Ceftriaxone	16	29	87.5	0 (0)	2 (12.5)	4 (8.3)		
Ciprofloxacin	26	27	96.6	0 (0)	0 (0)	1 (1.7)		
Ertapenem	22	12	83.3	0 (0)	0 (0)	7 (16.7)		
Gentamicin	39	18	95.0	0 (0)	1 (2.6)	2 (3.3)		
Imipenem	34	21	68.3	0 (0)	3 (8.8)	15 (25.0)		
Levofloxacin	33	25	91.7	0 (0)	1 (3.0)	3 (5.0)		
Meropenem	37	19	84.7	0 (0)	1 (2.7)	8 (13.6)		
Minocycline	29	11	80.0	0 (0)	0 (0)	9 (20.0)		
Piperacillin-tazobactam	23	30	83.3	0 (0)	0 (0)	10 (16.7)		
Tigecycline	35	3	87.2	0 (0)	0 (0)	5 (12.8)		
Tobramycin	39	17	93.2	0 (0)	0 (0)	4 (6.8)		
Trimethoprim-sulfamethoxazole	17	30	95.8	0 (0)	0 (0)	2 (4.2)		

J. Clin. Microbiol. **56:**e01678-17

RESULTS

TABLE 3 Resolved performant 18 h, by antibiotic	cod-cultu	re disk dif	fusion met	TABLE 5 Resolved performance by antibiotic	of dire	ct-from-	blood-cult	ture disk dif	fusion meth	od at 6 h,
		No. (%)	of:		No. of isolates			No. (%) o	of:	
Drug	% CA	VME	ME	Drug	s	R	% CA	VME	ME	mE
Amikacin	96.7	0 (0)	0 (0)	Amikacin	45	13	62.2	3 (23.1)	2 (4.4)	12 (26.7)
Amoxicillin-clavulanate	88.9	0 (0)	1 (11.1)	Amoxicillin-clavulanate	9	17	60.0	0 (0)	1 (11.1)	9 (36.0)
Ampicillin	93.3	0 (0)	0 (0)	Ampicillin	6	9	69.2	0 (0)	1 (16.7)	3 (23.1)
Aztreonam	94.3	0 (0)	0 (0)	Aztreonam	21	28	84.2	0 (0)	1 (4.8)	5 (13.2)
Cefazolin	73.1	0 (0)	2 (40.0)	Cefazolin	5	18	66.7	1 (5.6)	2 (40.0)	6 (25.0)
Cefepime	91.7	0 (0)	0 (0)	Cefepime	41	17	75.6	0 (0)	4 (9.8)	6 (13.3)
Cefoxitin	85.2	0 (0)	1 (10.0)	Cefoxitin	10	15	68.0	0 (0)	1 (10.0)	7 (28.0)
Ceftazidime	89.8	0 (0)	0 (0)	Ceftazidime	25	31	65.9	0(0)	4 (16.0)	11 (25.0)
Ceftriaxone	87.5	0 (0)	2 (12.5)	Ceftriaxone	16	29	77.3	0 (0)	3 (18.8)	7 (15.9)
Ciprofloxacin	96.6	0 (0)	0 (0)	Ciprofloxacin	24	27	57.1	0 (0)	1 (4.2)	16 (39.0)
Ertapenem	83.3	0 (0)	0 (0)	Ertapenem	22	12	73.7	0(0)	2 (9.1)	8 (21.1)
Gentamicin	95.0	0 (0)	1 (2.6)	Gentamicin	39	18	95.6	0(0)	0	2 (4.4)
Imipenem	68.3	0 (0)	3 (8.8)	Imipenem	34	21	46.7	0 (0)	6 (17.6)	18 (40.0)
Levofloxacin	91.7	0 (0)	1 (3.0)	Levofloxacin	33	25	75.6	0 (0)	1 (3.0)	10 (22.2)
Meropenem	84.7	0 (0)	1 (2.7)	Meropenem	36	19	52.3	0(0)	9 (25.0)	11 (25.6)
Minocycline	80.0	0 (0)	0 (0)	Minocycline	29	11	65.9	0(0)	0	12 (29.3)
Piperacillin-tazobactam	83.3	0 (0)	0 (0)	Piperacillin-tazobactam	22	30	64.4	2 (6.7)	4 (18.2)	11 (25.0)
Tigecycline	87.2	0 (0)	0 (0)	Tigecycline	35	3	45.7	0 (0)	3 (8.6)	16 (45.7)
Tobramycin	93.2	0 (0)	0 (0)	Tobramycin	39	17	95.6	0(0)	0	2 (4.4)
Trimethoprim-sulfamethoxazole	95.8	0 (0)	0 (0)	Trimethoprim-sulfamethoxazole	17	30	86.4	1 (3.3)	2 (11.8)	3 (6.8)

J. Clin. Microbiol. **56:**e01678-17

Table 3E-1. Test for Performing Disk Diffusion Directly From Positive Blood Culture Broth

Test	Direct Disk Diffusion
Test method	Disk diffusion using positive blood culture broth
Organism group	Enterobacterales and Pseudomonas aeruginosa
Medium	MHA
Antimicrobial concentration	Standard disk contents for the antimicrobials are detailed in Table 3E-2 (Enterobacterales) and Table 3E-3 (P. aeruginosa)
Inoculum	Positive blood culture broth with gram-negative bacilli, used within 8 hours of flagging positive by the blood culture system
Test procedure	1. Invert blood culture bottle 5-10 times to thoroughly mix.
	 Sterilize the top of the bottle with an alcohol wipe (allow to dry) and insert 20-gauge venting needle into the blood culture bottle.
	 Dispense 4 drops of blood culture broth onto an MHA plate. As a purity check, use an inoculated blood agar plate streaked for isolation.
	Spread blood culture broth across the entire surface of the MHA plate using a sterile cotton swab.
	5. Repeat this procedure by streaking twice more, rotating the plate approximately 60 degrees each time to ensure an even distribution of inoculum.
	6. Leave the lid ajar for 3-5 minutes (ideally) but no more than 15 minutes.
	7. Dispense antimicrobial disks onto the surface of the inoculated MHA plate.
	8. Press each disk down to ensure complete contact with the agar surface.
	9. Invert the plate and place in the incubator within 15 minutes of disks being applied.
Incubation conditions	35°C ± 2°C; ambient air
Incubation length	8-10 hours or 16-18 hours
Results	 Examine the blood agar purity plate to ensure pure growth.
	 Examine the test plate to ensure confluent lawn of growth appropriate to read disk zone tests per M02.1
	 Measure the zone diameters according to routine disk diffusion recommendations in M02.1
	4. Report results using the interpretive categories and zone diameter breakpoints in Table 3E-2 or Table 3E-3 if the
	gram-negative bacillus tested is confirmed to be an Enterobacterales or P. aeruginosa, respectively. If species is
	identified as another organism, do not interpret or report results.

Daily or weekly QC; *E. coli* ATCC 25922, *P. aeruginosa* ATCC 27853 CLSI M100-Ed32; 2022

TABLE 3E-2

						ries and Zone		
Test/Report	Antimicrobial	Disk	Read Times,	Bre		earest whole		
Group	Agent	Content	hours	5	SDD		R	Comments
PENICILLINS								
A	Ampicillin	10 µg	8-10	-	-	-	-	(3) Results of ampicillin testing can be used to predict results for amoxicillin.
			16-18	≥ 17	-	14-16	≤13	
								(4) Breakpoints are based on an ampicillin dosage regimen of 2 g parenterally administered every 4-6 h o an amoxicillin dosage regimen of 1-2 g parenterally administered every 6 h.
CEPHEMS (PAI	RENTERAL) (Includin	g cephalospi	orins I, II, III, and	i IV. Please	refer to Glo	ssary L)		
В	Ceftriaxone	30 µg	8-10	≥ 23		20-22	<u>≤</u> 19	(5) Breakpoints are based on a dosage regimen of 1 g administered every 24 h.
			16-18	≥ 23	-	20-22	≤19	
с	Ceftazidime	30 µg	8-10	≥ 21		18-20	≤17	(6) Breakpoints are based on a dosage regimen of 1 g administered every 8 h.
			16-18	≥ 21		18-20	≤ 17	
IONOBACTAN	lS .							
с	Aztreonam	30 µg	8-10	≥21	-	18-20	≤ 17	(7) Breakpoints are based on a dosage regimen of 1 g administered every 8 h.
			16-18	≥ 21		18-20	s 17	
WINDGLYCOS	SIDES							
A	Tobramycin	10 µg	8-10	≥ 15		13-14	≤12	
			16-18	≥15	-	13-14	≤ 12	
OLATE PATH	WAY ANTAGONISTS							·
B	Trimethoprim- sulfamethoxazole	1.25/ 23.75 µg	8-10	•		-	-	
			16-18	≤16	-	11-15	≤ 10	

Table 3E-3. Zone Diameter Disk Diffusion Breakpoints for Pseudomonas aeruginosa Direct From Blood Culture

General Comments

(1) The dosage regimens shown in the Comments column below are necessary to achieve plasma drug exposure (in adults with normal renal and hepatic function) on which breakpoints were derived. When new breakpoints are implemented, it is strongly recommended that laboratories share this information with infectious diseases practitioners, pharmacists, pharmacy and therapeutics committees, infection prevention committees, and the antimicrobial stewardship team.

(2) For additional testing and reporting recommendations, refer to Table 2B-1.

NOTE: Information in boldface type is new or modified since the previous edition.

				interpre	etive Categor	ries and Zone	Diameter	
Test/Report	Antimicrobial	Disk	Read Times,	Br	eakpoints, n	earest whole	mm	
Group	Agent	Content	hours		SDD		R	Comments
CEPHEMS (PAR	RENTERAL) (Includin	g cephalosp	orins I, II, III, and	i IV. Please	refer to Glo	ssary I.)		
A	Ceftazidime	30 µg	8-10	-	-	-	-	(3) Breakpoints are based on a dosage regimen of 1 g administered every 6 h or
			16-18	≥ 18		15-17	≤ 14	2 g administered every 8 h.
CARBAPENEMS	5							
8	Meropenem	10 µg	8-10		-	-	-	(4) Breakpoints are based on a dosage regimen of 1 g administered every 8 h.
			16-18	≥ 19		16-18	≤ 15	
AMINOGLYCOS	SIDES							
A	Tobramycin	10 µg	8-10	≥ 15	-	13-14	≤ 12	
			16-18	≥ 15	-	13-14	≤ 12	
FLUOROQUING	DLONES							
В	Ciprofloxacin	5 µg	8-10	≥ 23	-	18-22	≤17	(5) Breakpoints are based on a dosage regimen of 400 mg administered
			16-18	≥ 25		19-24	≤ 18	parenterally every 8 h.
obreviations: I	l, intermediate; R, n	esistant; S,	susceptible; SDD	, susceptib	le-dose depe	indent.		

CLSI M100-Ed32; 2022

ġ,

Other General Comments

Appendix E Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints

Appendix E. Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints

The evolving science of pharmacokinetics-pharmacodynamics has become increasingly important in recent years in determining minimal inhibitory concentration (MIC) breakpoints. Recently approved susceptible or susceptible-dose dependent (SDD) breakpoints for a number of agents have been based on a specific dosage regimen(s); these dosage regimens are listed in the table below. Proper application of the breakpoints necessitates drug exposure at the site of infection that corresponds to or exceeds the expected systemic drug exposure at the dose listed in adult patients with normal renal function. This information should be shared with pharmacists, infectious diseases staff, and others making dosing recommendations for the institution.

	1	Breakpoints and Interpretiv	e Categories	2000 C		
		Susceptible	SDD			
Antimicrobial Agent	MIC	Dose	MIC	Dose		
Table 2A. Enterobacterales						
Ampicillin (used to predict results for amoxicillin)	≤8 µg/mL	Breakpoints are based on an ampicillin dosage regimen of 2 g parenterally administered every 4-6 h or an amoxicillin dosage regimen of 1-2 g parenterally administered every 6 h.	N/A			
Ampicillin (used to predict results for amoxicillin; E. coli, P. mirabilis, Shigella, and Salmonella for uncomplicated UTIs only)	≤ 8 µg/mL	Breakpoints when oral ampicillin is used for therapy of uncomplicated UTIs due only to <i>E. coli</i> , <i>P. mirabilis</i> , <i>Shigella</i> , or <i>Salmonella</i> are based on an ampicillin dosage regimen of 500 mg orally administered every 6 h or amoxicillin dosage regimen of 250 mg orally administered every 8 h or 500 mg every 12 h.	N/A			

DOSAGE COMMENT ADDITIONS

Enterobacterales

ampicillin (IV, PO) amoxicillin-clavulanate (IV, PO) ampicillin-sulbactam cefazolin (uncomplicated UTI) imipenem-relebactam (for *Morganellaceae*) piperacillin-tazobactam

Pseudomonas aeruginosa ceftolozane-tazobactam

Staphylococcus aureus

dalbavancin, oritavancin, tedizolid, telavancin CLSI M100-Ed32; 2022

DOSAGE COMMENT ADDITIONS

• Enterococcus spp.

penicillin (IV, PO) ampicillin (IV, PO) dalbavancin (VRE), oritavancin, tedizolid, telavancin

Haemophilus influenzae, H. parainfluenzae

ampicillin (IV, PO)ampicillin-sulbactamamoxicillin-clavulanateceftolozane-tazobactam

Streptococcus pneumoniae (non-CSF comments) amoxicillin amoxicillin-clavulanate

DOSAGE COMMENT ADDITIONS

Streptococcus spp. β -hemolytic group

oritavancin, telavancin dalbavancin (only A, B, C), tedizolid (only A, B)

Streptococcus spp. viridans group

oritavancin, telavancin dalbavancin, tedizolid only for *S. anginosus* group

 Neisseria meningitidis ampicillin

Revisions

N. gonorrhoeae/tetracycline *Enterobacterales*/ceftolozane-tazo

CEFIDEROCOL

Group B (primary test, report selectively); former in

Enterobacterales Acinetobacter spp.

Pseudomonas aeruginosa Stenotrophomonas maltophilia

Breakpoint revisions

Disk diffusion *Enterobacterales* (only the I and R) Disk diffusion *Acinetobacter* spp. (S only) Both formats *Stenotrophomonas maltophilia* (S only)

Dosage commentary

Acinetobacter spp., Stenotrophomonas maltophilia CLSI M100-Ed32; 2022

THE INTERMEDIATE COMMENT

^ agents that have ability to concentrate in urine

(4) An intermediate (I) with a ^ in Tables 2 indicates agents that have the potential to concentrate in the urine. The I^ is for informational use only. The decision to report I^ is best made by each laboratory based on institution-specific guidelines and in consultation with appropriate medical personnel.

Enterobacterales Pseudomonas aeruginosa Enterococcus spp.

β-LACTAM/β-LACTAMASE INHIBITOR

"Organisms that test S to the β -lactam agent alone are also considered S to the β -lactam combination agent. However, organisms that test S to the β -lactam combination agent cannot be assumed to be S to the β -lactam agent alone."

 β -lactam agent alone SDD, I, R \rightarrow may be S to β -lactam combination agent

Applies to

EnterobacteralesPseudomonas aeruginosaAcinetobacter spp.Other Non-EnterobacteralesHaemophilus influenzae and H. parainfluenzaeAnaerobes

Replaces imipenem-relebactam comment (in some) CLSI M100-Ed32; 2022

Table 2

67

TABLE 2A--Enterobacterales

- Ampicillin can predict amoxicillin
- Disk diffusion revision ceftolozane-tazobactam (+1 mm)

Piperacillin

	Dis	k Diffusi	on	Broth Microdilution			
CLSI M100	S		R	S		R	
Old	≥ 21	18-20^	≤ 17	≤ 16	32-64^	≥ 128	
New				≤ 8	16	≥ 32	

No disk diffusion correlative data for broth microdilution breakpoints

CLSI M100-Ed31, 2021; -Ed32, 2022

TABLE 2C--Staphylococcus spp.

Table 2C. Staphylococcus spp. (Continued)

	Antimicrobial	Staphylococcus spp.	Disk	Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm			Interpre Mi	C Breakı µg/m	points,				
Group	Agent	Indications	Content	S	SDD		1	R	S	SDD		R	Comments
GLYCOPEP													
													ferentiate vancomycin-susceptible
								among va	incomycin-sus	ceptible	, -inter	mediate,	and -resistant isolates of
		han S. aureus, all of v	which give s	similar s	ize zone	s of innib	ition.		10		4.0	1 - 11	(22) For C autous unconsumin
В	Vancomycin	S. aureus, including MRSA		-	-				≤2	-	4-8	≥16	 (22) For S. aureus, vancomycinsusceptible isolates may become vancomycin intermediate during the course of prolonged therapy. (23) Send any S. aureus for which the vancomycin is ≥8 µg/mL to a referral laboratory. See Appendix A. Also refer to Table 3G-1 for S. aureus, Subchapter 3.12 in M07,⁴ and Subchapter 3.9 in M02.¹
12		Staphylococcus spp. other than S. aureus	-	-	-	-		-	≤4	-	8-16	≥32	See comment (20). (24) Send any Staphylococcus spp. other than S. aureus for which the vancomycin MIC is ≥ 32 µg/mL to a referral laboratory. See Appendix A. See also Subchapter 3.12 in M07 ⁴ and Subchapter 3.9 in M02. ¹

also for lefamulin

Detection of methicillin (oxacillin) resistance in staphylococci is achieved by using specific methods as listed in Table 2C and further described in Tables 3G-1 and 3G-2.

	Phenotypic Methods for Detection of Methicillin (Oxacillin)-Resistant Staphylococcus spp.							
Organism	Cefoxitin MIC	Cefoxitin disk diffusion	Oxacillin MIC	Oxacillin disk diffusion	Oxacillin salt agar			
S. aureus	Yes (16-20 h)	Yes (16-18 h)	Yes (24 h)	No	Yes (24 h)			
S. lugdunensis	Yes (16-20 h)	Yes (16-18 h)	Yes (24 h)	No	No			
S. epidermidis	No	Yes (24 h)	Yes (24 h)	Yes (16-18 h)	No			
S. pseudintermedius	No	No	Yes (24 h)	Yes (16-18 h)	No			
S. schleiferi	No	No	Yes (24 h)	Yes (16-18 h)	No			
Staphylococcus spp. (not listed above or not identified to the species level)	No	Yes ^a (24 h)	Yes ^a (24 h)	No	No			

Staphylococcus aureus complex:

S. aureus S. argenteus[†] S. schweitzeri

[†] Report as "*S. aureus* complex (*S. argenteus*)"; perform *S. aureus* AST

TABLE 2G--H. influenzae, parainfluenzae

Amoxicillin-clavulanate

	Dis	k Diffusi	on	Broth Microdilution				
CLSI M100	S		R	S		R		
Old	≥ 20		≤ 19	≤ 4/2		≥ 8/4		
New				≤ 2/1	4/2	≥ 8/4		

Lefamulin

Increased zone size (S) also for *S. pneumoniae*; MIC (S only) stays at ≤ 0.5

	Dis	k Diffusi	on	Broth Microdilution				
CLSI M100	S		R	S		R		
Old	≥ 17			≤ 2				
New	≥ 18			≤ 2				

CLSI M100-Ed31, 2021; -Ed32, 2022

LEFAMULIN

TABLE 1 Frequency of occurrence of lefamulin MICs for all pathogens tested

	Cumulative % of isolates inhibited at lefamulin MIC (µg/ml) of:								MIC90					
Organism (no. of isolates)	≤0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	>8	(μg/ml)	(µg/ml)
S. pneumoniae (3,923)	0.1	1.8	11.4	55.1	93.7	99.6	99.9	100.0					0.06	0.12
Penicillin nonsusceptible, nonmeningitis (≥4 µg/ml) (189)	0.0	1.1	7.9	64.0	98.4	100.0			"S	"	nl	V	0.06	0.12
Ceftriaxone nonsusceptible ($\geq 2 \ \mu g/ml$) (155)	0.0	0.6	10.3	63.9	99.4	100.0						. y	0.06	0.12
Erythromycin nonsusceptible (≥0.5 µg/ml) (1,348)	0.2	2.2	12.4	52.9	93.1	99.0	99.7	100.0					0.06	0.12
Levofloxacin nonsusceptible (≥4 µg/ml) (47)	0.0	8.5	23.4	68.1	89.4	97.9	97.9	100.0					0.06	0.25
MDR ^a (821)	0.4	2.9	15.8	61.1	96.3	99.8	99.8	100.0					0.06	0.12
XDR ^a (181)	0.0	0.6	7.2	64.6	98.9	100.0							0.06	0.12
S. aureus (2,919) Methicillin susceptible (1,981) Methicillin resistant (938)			26.0 25.6 26.9	88.9 95.2 75.7	99.2 99.7 98.2	99.6 99.7 99.4	99.7 99.8 99.5	99.8 99.9 99.6	99.8 >99.9 99.7	99.8 >99.9 99.8	99.8 >99.9 99.8	100.0 100.0 100.0	0.06 0.06 0.06	0.12 0.06 0.12
H. influenzae (1,086) β-lactamase negative (835)					1.7 1.9	20.4 20.0	69.4 67.5	93.8 93.2	99.1 98.9	99.9 100.0	100.0		0.5 0.5	1
β -lactamase positive (251)					1.2	21.9	75.7	96.0	99.6	99.6	100.0		0.5	1
M. catarrhalis (667)	1.0	2.4	11.1	88.3	99.9	100.0							0.06	0.12

Antimicrob. Agents Chemother. 63:e02161-18

Table 3

TABLE 3D AND 3K

Specialized colistin resistance testing

E. coli ATCC BAA-3170 formerly known as E. coli AR Bank #0349 mcr-1

Adjustments to QC range for this *E. coli* and *P. aeruginosa* ATCC 27853

High-level aminoglycoside resistance Enterococcus

penicillin, ampicillin MIC \geq 16 µg/mL are R penicillin \leq 64 µg/mL, ampicillin \leq 32 µg/mL may be susceptible to synergy with aminoglycosides

Table 5

SOME MIC QC ADDITIONS/REVISIONS

E. coli ATCC 25922	imipenem imipenem-relebactam meropenem-nacubactam ceftibuten					
<i>E. coli</i> NCTC 13353	meropenem ceftibuten					
K. pneumoniae ATCC BAA-2814	ceftibuten					
K. pneumoniae ATCC BAA-1705	ceftibuten					
K. pneumoniae ATCC 700603	imipenem imipenem-relebactam					
A. baumannii NCTC 13304	meropenem					
E. faecalis ATCC 29212	gepotidacin ozenoxacin					
H. influenzae ATCC 49247	grepafloxacin					
N. gonorrhoeae ATCC 49226	gentamicin					
CLSI M100-Ed32; 2022						

MORE MIC QC ADDITIONS/REVISIONS

tebipenem	S. aureus ATCC 29213 Bacteroides fragilis ATCC 25285 Bacteroides thetaiotaomicron ATCC 29741 Clostridioides difficile ATCC 700057 Eggerthella lenta ATCC 43055
fidaxomicin	Clostridioides difficile ATCC 700057

THE END

- Keynote address
- Stewardship panel
- Review of automated systems, antibiograms
- Surveillance
- CAP and CLSI
- WCLN honoree
- Free food; maybe more

"WCLN Antibiotic Resistance Conference - 2022"

A WCLN Conference for Wisconsin Laboratory Professionals

VITEK

April 26, 2022

78

Thank you for your attention. Have a better 2022.

Brew

TM

79