The ABC's (and D & E's) of the Viral Hepatitides Part 2

Thomas Novicki PhD DABMM
Clinical Microbiologist
Division of Laboratory Medicine
novicki.thomas@marshfieldclinic.org

Objectives 2

- Explain the various modes of transmission of each virus discussed.
- 2. Describe the mortality and morbidity associated with the viral hepatitides.
- 3. Give a basic description of the makeup and structure of each virus.
- 4. Be able to select the correct lab diagnostics for each virus discussed.
- 5. Discuss current treatments and efficacy.

Disclosures 3

- I have nothing relevant to this topic to disclose.
- All tables and graphs have been drawn from public domain websites.

DIAGNOSTIC TESTS Marshfield Clinic* Don't pad line. Shine.

Ag/Ab Relationships in Chronic Infection 6

- These patterns apply to acute viral hepatitis (VH) infections, but change in chronic VH:
 - Viral antigen and virions (i.e. viral particles) usually remain detectable in blood and other fluids.
- ❖IgG class Abs directed against the virus do not appear as expected.
- These differences present many diagnostic opportunities.

Blood Studies for Suspected VH

- ❖ Alanine and aspartate amino transferases
- ❖ Total and Direct bilirubin
- Albumin and total protein
- ❖ CBC
- ❖ aPTT, PT/INR
- Alpha fetoprotein
- HAV, HBV, HCV Ab/Ags (more in a moment...)

HAV & HEV 8

- Diagnosis of HAV and HEV is less complex than the others, due to no chronic phase.
- The primary markers measured are virusspecific antibodies.
- However, the lack of an IVD assay for HEV antibody hampers testing in the USA.

HAV Diagnosis 10

- IgM detection is required for diagnosis; many commercial assays are available.
- Total/IgG anti-HAV assays assess immune status only, since IgG anti-HAV persists for decades.
 - While a positive result indicates immunity, commercial assays don't reliably detect vaccine-induced immunity.
- Antigen detection and nucleic acid amplification tests (NAAT) are not commercially available, and HAV is not cultivable.

HEV Diagnosis 11

- ❖ IVD assays not available. At least one commercial reference lab and the CDC offers anti-HEV antibody testing: IgM detection is the key to diagnosis.
- CDC also performs RT-PCR and genotyping.
- Virus is not cultivable.
- Best approach? Contact the WI DPH or WSLH if HEV is suspected.

HBV/HDV Diagnosis

- 12
- The diagnosis of HBV & HDV is more complex due to acute and chronic phases of infection.
 - Diagnosis initially made by detection of viral Ag & Ab.
 - Staging and monitoring therapy also uses quantitative nucleic acid amplification testing (NAAT; i.e. 'viral load').
- In contrast to HCV, HBV genotyping is not routinely done to begin therapy.

Ag/Ab Detection: The Players Ag/Ab Abbreviation Hepatitis B surface antigen HBsAg Hepatitis B core antigen Not detectable Hepatitis B e antigen HBeAg Anti-HBsAg antibody (Total) Anti-HBs Anti-HBcAg antibody (IgM &Total) Anti-HBc Anti-HBeAg antibody (Total) Anti-HBc

HBV Serological Tests 15

Marshfield Clinic

Primary Markers

*HBsAg Indicates ongoing infection, acute or chronic.
OR

❖Anti-HBs Indicates resolved infection. Alone, a marker of vaccination (≥ 10mIU/mL considered protective).

IgM anti-HBc Indicates acute infection.
REPLACED BY

*Total anti-HBc Denotes evolved infection; does not differentiate chronic vs. resolved infection.

Secondary Markers

*HBeAg Indicates rapid viral replication, high infectivity.
REPLACED BY

❖Anti-Hbe Seen in resolved acute & inactive chronic infection.

Chronic HBV Markers: A Closer Look 16

Phase (Stage)	Positive Lab Findings
Immune Tolerance	HBsAg, Total anti-HBc, HBeAg, ↑ HBV DNA
Immune Clearance	HBsAg, Total anti-HBc, HBeAg, I HBV DNA, I transaminases, abnormal liver histology
Inactive CS	HBsAg, Total anti-HBc, anti-HBe, (Transaminases may flare)
(Occult hepatitis B)	± findings for Total anti-HBc, ↑ transaminases, abnormal liver histology. HBV DNA detectable only by sensitive research assays
Isolated Anti-HBc – Positive	Negative for both HBsAg & anti-HBs is not unusual (0.5-20%); meaning unclear. Needs follow-up; may be infectious.

CS, HBsAg Carrier State; ↑ HBV DNA, > 20,000IU/mL

Horvat, RT and GE Tegtmeier 2011. Hepatitis B and D Viruses, p 1670-71. In J. Versalovic et al (eds), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington DC & A Valsamakis 2007 Clin Microbiol Rev 20:426

HBV NAAT 17

- ❖ Quantitative NAAT
 - ❖Several commercially available assays
 - ❖A WHO HBV international standard exists. However, quantitation still varies among assays.
 - ❖Best practice is to consistently use the same assay.
 - If changing a viral load assay, perform and report both assays (only charging for one) for 3-6mos to 'reset' all patient's viral loads as a service to your providers.

HBV NAAT

18

Some HBV Viral Load Interpretive Guidelines

- *>1log₁₀ (i.e. >10-fold) reduction is predictive of therapeutic success, while >1log₁₀ increase during treatment suggests development of antiviral resistance.
- ❖Increasing levels correlate histologically with cirrhosis.
- Sustained suppression of viral DNA is the best measure of long term therapeutic success.

Horvat, RT and GE Tegtmeier 2011. Hepatitis B and D Viruses, p 1671. *In J. Versalovic et al* (eds), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington DC

HDV Diagnosis

19

- ❖ HBV co-infection required-also test for HBV.
- Anti-HDV Ab detection
 - ❖Screen with Total anti-HDV
 - ❖Reflex to IgM anti-HDV to assess for acute state
- Viral load testing for disease activity
- ❖ But, there are no FDA cleared IVD assays.

HCV Diagnosis-Some Differences...

20

- Acute infection usually asymptomatic, so most cases appear after years of silent chronic infection.
- Unlike HBV, HCV genotype or level of viremia do not correlate with severity or likelihood of chronic disease progression. However genotype and viral loads are critical in making therapeutic decisions.
- Only Total anti-HCV Ab is measured.
- * Recombinant immunoblot assay (RIBA) still used.
- ❖ But like HBV, HCV diagnostics are not simple.

HCV Diagnosis 21

- Gen 3.0 HCV Ab assays predominate in the USA, but one 2.0 assay still marketed.
- ❖3.0 has better sensitivity and equal specificity, shortening seroconversion window by ∼2 weeks.
- Several 3.0 assays may report positive results when S/CO ratio is above a threshold set by manufacturer.
 - If below threshold, OR any positive value in the other assays, requires confirmation.

HCV NAAT 22

- Both qualitative and quantitative HCV RNA assays available as FDA-IVD, ASR or RUO.
- Qualitative assays traditionally considered most sensitive, but several current quantitative assays are almost as sensitive.
- + HCV NAAT can assist in diagnosing acute infection before seroconversion (e.g. after exposure), but is most often used in Tx of chronic HCV.

HCV NAAT 23

- * HCV NAAT in chronic infection
 - Plays an important part in the confirmation of anti-HCV Ab screen results.
 - HCV viral loads, along with HCV genotype, are critical in monitoring and tailoring therapy.
- Most labs now only use highly sensitive quantitative NAATs in all phases of diagnosis and treatment.

Hepatitis C Virus (HCV) Infection Testing for Diagnosis Inti-HCV Inti-HCV

PREVENTION & TREATMENT

Marshfield Clinic*

Don't real live. Shine.

HV Prevention 26 ❖ Basic Public Health Efforts ❖ Clean water ❖ Sanitation systems ❖ Screening of blood/blood products supply ❖ Promotion of safe sex practices ❖ IVDU → Reduce/educate/needle exchange ❖ Vaccination

VH Vaccines 27 → HAV Yes. → Used in low-moderate incidence countries where symptomatic disease in adults occurs. → Not necessary in highly endemic countries where all are asymptomatically infected as infants, and where there is no chronic stage. → HBV Yes. Used worldwide. (179 countries in 2010) → Universally attractive since it prevents advancement to chronicity, cirrhosis and HCC. → HCV Many attempts, none successful.

Chronic HBV Treatment 31

- Two major drug classes
 - Pegylated interferon-alpha (PEG-INFα)
 - ❖Stimulates immune response
 - ❖No resistance noted
 - Cannot be given with severe liver disease
 - ❖Nucleoside/nucleotide analogs
 - ❖Similar to anti-HIV Rx; targets viral replication
 - ❖Varying rates of resistance occur
 - Can be given when liver disease is severe
- May be combined, but which cocktail is best?

33

Chronic HBV Treatment 32

- ❖ Viral load is monitored during Tx
 - ❖ \geq 1 log₁₀ (> 10X) rise suggests a new resistance.
- Viral genotyping is of little benefit, but genotypic testing for antiviral resistance may be of value.
 - ❖Lab-developed tests only-buyer beware.
 - Results are not straightforward.

Chronic HBV Treatment

- Determining treatment 'success' is difficult
 - ❖Sustained suppression of viral replication?
 - ❖Normal transaminases?
 - ❖Anti-HBe seroconversion?
 - ❖Anti-HBs seroconversion (rare i.e. HBsAg persists)?
 - ❖Quantitation of HBsAg?
- Goal is to suppress virus enough to prevent segualae, not to completely eradicate.

Chronic HCV Treatment 34

- Treatment is challenging due to the high mutability of HCV, leading to resistant strains in the background in an untreated patient.
 - ❖Once Tx begins the resistant strain predominates.
- Combination therapy helps fight emergence of resistant strains.

Chronic HCV Treatment 35

- Principles of HCV treatment similar to that of chronic HBV, but are more developed.
- Standard treatment had been a cocktail of PEG-INF $\!\alpha$ and the antiviral ribavirin until the FDA approved boceprevir and telaprevir in 2011.
- boceprevir and telaprevir
- ❖Inhibits viral replication.
- ❖For use against chronic HCV due to genotype 1, the most common genotype in the USA, and most difficult to treat.
- Used in combination with PEG-INFα and ribavirin.

Chronic HCV Treatment - Definitions 36 Rapid virologic response (RVR) No detectable HCV RNA* at Tx wk 4 Early virologic response (EVR) ≥ 2log₁₀ drop in HCV RNA at Tx wk 12 End of treatment (EOT) End of customized Tx period End of follow-up (EFU) Last time point for HCV RNA testing in VR+ patients, typically 24 wk EOT Virologic response (VR) No detectable HCV RNA* at EOT Sustained VR (VR) No detectable HCV RNA* at EFU HCV RNA limit of detection <50IU/mL; all HCV RNA measurements in plasma/serum

Forman, M and A Vasamakis 2011. Hepatitis C Virus, p 1439. *In J. Versalovic et al* (eds), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington DC

Chronic HCV Treatment 37

- Length of treatment ranges between 24-72 wks.
- ❖ Is customized based on:
 - ❖Baseline HCV RNA load (< 400,000 commonly)</p>
 - ❖Genotype (Gt1 requiring longer Tx)
 - Milestones (RVR and/or EVR shortens Tx period)
 - **❖**Co-morbidities.

Chronic HCV Treatment

38

- ❖ As with HBV, Tx is generally reserved for those with active disease.
- ❖ SVR ranges from ~40-80%.
 - ❖Gt1, high initial viral load have lowest SVR rate.
- Relapse occurs; patients often respond to a second course of Tx.

Summary

39

- The clinical laboratory plays a major part in both diagnosis and monitoring of treatment of HVs.
- 2. HAV and HBV are preventable with vaccination, while HCV is not.
- 3. While not fully curable, chronic HBV and HCV can now be successfully managed in the high resource setting of many developed countries.
- 4. In low-resource countries, HBV and in the future HEV vaccination offer the most effective approach.

ı	í	l		ľ	ч	ä	a	ľ	5	š	h	ı	fie	ŀ	d	(i	n	ic	Ċ
													Dor							

QUESTIONS?

