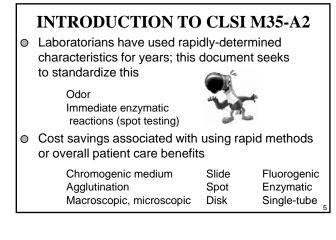

Overview of CLSI Document M35-A2 For Bench-level Identification of Clinically-significant Microorganisms


> Erik Munson Clinical Microbiology Wheaton Franciscan Laboratory Milwaukee, Wisconsin

The presenter states no conflict of interest and has no financial relationship to disclose relevant to the content of this presentation.

OUTLINE

- I. Introduction of concept
- II. Major players
- III. Application one
 - A. CLSI M35-A2
 - B. Perhaps why you are here
- IV. Application two
 - A. Routine (but possibly covert) bench dealings
 - B. Help out WSLH

BENEFITS OF RAPID RESULTS

Study	Turnaround Time P	Length of Stay P ⁴	Mortality Index P ⁴	Average Cost P ⁴	Notes
Doern et al.1	< 0.0005	NS⁵	< 0.02	0.01	Rapid MicroScan product
Barenfanger et al. ²	0.001 ⁴	0.006	0.45	0.04	VITEK product
Kerremans et al. 3	< 0.0001	ND ⁶	0.21	ND	VITEK products

¹J. Clin. Microbiol. **32:** 1757-1762; 1994 ²J. Clin. Microbiol. **37:** 1415-1418; 1999 ³J. Antimicrob. Chemother. **61:** 428-435; 2008 ⁴Role of rapid susceptibility testing also factored into this calculation ⁵Not significant ⁶Not determined

WARNING

 Laboratory directors, managers, and supervisors responsible for ensuring appropriate use of rapid methods

 "Isolates to be tested should match the criteria required for proper identification."

CLSI M35-A2; 2008

Colony, Gram stain Smell (when safe)

CAVEATS

- Isolates conforming to reactions described in M35-A2 identify organism with >95% accuracy; identification can be reported without qualification
- "Confirmation by additional procedures is unnecessary for many of the species described in this document."

CLSI M35-A2; 2008

 Lack of a positive result does not rule out the identification of an isolate; just signifies need for additional testing

MORE WARNINGS

Employ standard precautions

Cover transmission of all infectious agents Universal precautions cover blood-borne pathogens Refer to CLSI M29

• Sniffing/wafting can be dangerous

Once mold colony is ruled out, opening of plates from non-invasive sources (i.e., urine, sputum) is common & relatively safe

P. aeruginosa, H. influenzae, Eikenella, S. anginosus group odor can be detected by opened plates "not sniffed purposely"

EXCLUSIONS????

• Rapid results may need to be validated

Certain microbes from normally-sterile sites Potential agents of bioterrorism Microbes important to infection control practitioners Microbes implicated in nosocomial outbreaks

O Risk (being wrong) vs. benefit (patient care/safety)

M35-A eliminated certain organism groupings

However, possibility of serious pathogen or ability to rule out potential agent of bioterrorism has resulted in M35-A2 including additional organisms

	CLSI M35-A2 PR	ROTOCOLS
igodot	Test descriptions	
	Reagents L	nterpretation imitations (precautions) Quality control
\circ	Thirteen reagents/tests	
	Bile solubility Rapid spot CAMP Catalase (aerobes) Catalase (anaerobes) Germ tube Rapid hippurate hydrolys Spot indole	Indoxyl acetate MUG test Spot oxidase δ-aminolevulinic acid Rapid trehalose sis Urea/phenylalanine deaminase

CATALASE

- 3% hydrogen peroxide
- Touch center of isolated colony with stick

Transfer to clean glass slide Place drop of hydrogen peroxide onto cell paste

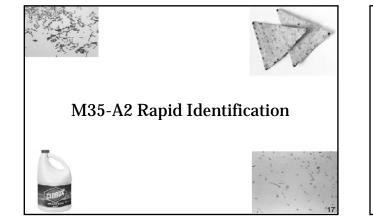
- "Immediate" bubbling (< 20 seconds) is positive
- No non-platinum loops; don't grab blood agar
- If slow-growing isolate on blood agar (no growth MacConkey) or small GNR, perform test in biological safety cabinet

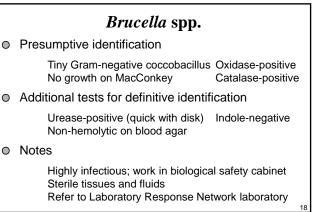
SPOT INDOLE

- 5% (w/v) p-dimethylaminobenzaldehyde
 1% paradimethylaminocinnamaldehyde in HCI
- Moisten piece of filter paper with reagent
 Rub portion of CFU from blood agar onto paper
 Growth medium must contain sufficient tryptophan
- Pigment formation (< 20 seconds) is positive
- Cannot use media containing dyes Cannot use Mueller-Hinton or high-glucose agar Detectable indole diffuses to adjacent colonies within 5 mm (false-positive results)

SPOT OXIDASE

• 1% tetramethyl-*p*-phenylenediamine dihydrochloride


Moisten piece of filter paper with reagent


Rub portion of CFU from blood agar onto paper Use wooden stick or platinum bacteriological loop

- Blue/purple pigment (< 10 seconds) is positive
- Cannot use MacConkey or other purple agar Nickel-based alloy wires containing chromium or iron may yield false-positive results upon organism transfer

UREASE TUBE

- O 20 g/L urea
- Inoculate with large loopful of growth; Incubate 35° C ambient air for two hours
- Deep pink color of broth indicates urease-positive organisms; timing of reaction is important
- Positive reactions can be followed up with by phenylalanine deaminase testing

Brucella spp.

Presumptive identification

Tiny Gram-negative coccobacillus Oxidase-positive No growth on MacConkey Catalase-positive

Additional tests for definitive identification

Urease-positive (quick with disk) Indole-negative Non-hemolytic on blood agar

LIMITATIONS/additional factors

Oligella ureolytica, Bordetella bronchiseptica, and Haemophilus influenzae can resemble Brucella spp.

Brucella spp. are phenylalanine deaminase-negative

Campylobacter jejuni/coli Presumptive identification Gram-negative bacilli (gull wing) Oxidase-positive Darting motility Catalase-positive Additional tests for definitive identification Hippurate-positive Campylobacter jejuni Indoxyl acetate-positive Campylobacter jejuni/coli Notes Isolated colonies on Campylobacter-selective medium incubated in microaerophilic 42° C

Cardiobacterium hominis

Presumptive identification

Pleomorphic, thin GNR No growth on MacConkey

Oxidase-positive Catalase-negative

O Additional tests for definitive identification

Indole-positive Non-hemolytic on blood agar; may pit

Notes

Isolate must be derived from blood culture Confirm with negative nitrate test

Cardiobacterium hominis

• Presumptive identification

Pleomorphic, thin GNR

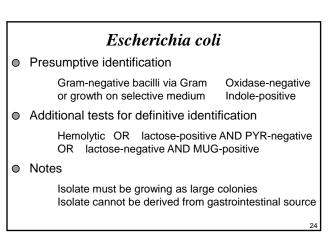
No growth on MacConkey

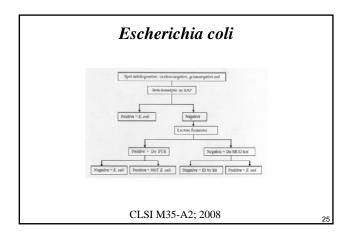
Oxidase-positive Catalase-negative

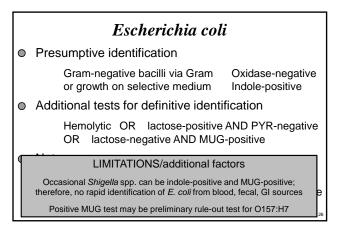
Additional tests for definitive identification

Indole-positive Non-hemolytic on blood agar; may pit

LIMITATIONS/additional factors


Pasteurella bettyae has same rapid biochemical profile as C. hominis, but is not known to cause endocarditis


Rosette-forming, thin GNR (with above biochemicals) in adult blood cultures


Eikenella corrodens Presumptive identification Small GNR; pits blood, chocolate Oxidase-positive No growth on MacConkey Catalase-negative Additional tests for definitive identification Indole-negative Distinct odor of bleach Non-hemolytic on blood agar Notes

Capnophilic

The only MacConkey-negative, catalase-negative, oxidase-positive GNR that is ornithine-positive

Francisella tularensis

• Presumptive identification

Tiny GNR or coccobacillus (sand) Oxidase-negative Growth on chocolate (48-72h) Catalase-neg/wk

Additional tests for definitive identification

 β -lactamase-positive

Notes

Highly infectious; work in biological safety cabinet No satellitism on blood agar around *Staph* streak Refer to Laboratory Response Network laboratory

Haemophilus influenzae

• Presumptive identification

Gram-negative coccobacillus Good growth on chocolate; not blood, MacConkey

Additional tests for definitive identification

 $\delta\text{-aminolevulinic}$ acid-negative

Notes

Satellitism on blood agar around *Staphylococcus* streak separates *Haemophilus* from *Brucella* and *Francisella*

Haemophilus influenzae

Presumptive identification

Gram-negative coccobacillus Good growth on chocolate; not blood, MacConkey

Additional tests for definitive identification

 δ -aminolevulinic acid-negative

LIMITATIONS/additional factors

Rapid identification algorithm applies to CSF and respiratory isolates

Haemophilus haemolyticus cannot be differentiated from H. influenzae, with exception of hemolysis characterization on horse blood agar

Kingella kingae Presumptive identification Gram-negative coccoid bacillus No growth on MacConkey Additional tests for definitive identification Hemolytic colonies on blood agar Notes Joint fluids, blood cultures, other sterile body sites Early growth confused for β-hemolytic streptococci

Moraxella catarrhalis

Presumptive identification

Gram-negative diplococci Hockey puck on blood agar

• Additional tests for definitive identification

Butyrate esterase-positive Indoxyl acetate-positive

Notes

Broth microdilution and disk diffusion susceptibility testing guidelines described in M45-A2

Oxidase-positive

Catalase-positive

Moraxella catarrhalis

Presumptive identification

Gram-negative diplococci Hockey puck on blood agar Oxidase-positive Catalase-positive

• Additional tests for definitive identification

Butyrate esterase-positive Indoxyl acetate-positive

LIMITATIONS/additional factors

Most other *Moraxella* spp. are positive for butyrate esterase, but are coccobacilli rather than diplococci

Neisseria meningitidis

Presumptive identification

Gram-negative diplococci Oxidase-positive Glistening non-hemolytic growth on blood agar

Additional tests for definitive identification
 γ-glutamyl-aminopeptidase-positive

Notes

Highly infectious; work in biological safety cabinet

Neisseria lactamica

• Presumptive identification

Gram-negative diplococci Oxidase-positive Graying non-hemolytic growth on blood agar

- Additional tests for definitive identification
 β-galactosidase-positive
- Notes

 \odot

 \bigcirc

Neisseria gonorrhoeae

Presumptive identification

Gram-negative diplococci Oxidase-positive Strongly catalase-positive with 30% H₂O₂

Additional tests for definitive identification

β-galactosidase-negative γ-gluatmyl-aminopeptidase-negative

Notes

Growth on *N. gonorrhoeae*-selective medium No growth on Mueller-Hinton or tryptic soy media

3

Proteus mirabilis Presumptive identification Spreading colony Indole-negative Additional tests for definitive identification None, if susceptible to ampicillin Notes (if resistant to ampicillin) Proteus spp. Ornithine decarboxylase Maltose fermentation Proteus spp. Ornithine decarboxylase Proteus spp. Initive Penneri negative Positive positive

Proteus mirabilis

Indole-negative

Presumptive identification

Spreading colony

Additional tests for definitive identification

None, if susceptible to ampicillin

LIMITATIONS/additional factors

Instead of pursuing maltose or ornithine decarboxylase testing, one could report ampicillin-resistant (indole-negative) Proteae as "indole-negative Proteus" or P. mirabilis/P. penneri

Proteus vulgaris

Presumptive identification
 Spreading colony

Indole-positive

- Additional tests for definitive identification
- Notes

Pseudomonas aeruginosa

Presumptive identification

Indole-negative Oxidase-positive Metallic/pearlescent, rough, pigmented, mucoid

Additional tests for definitive identification
 Grape-like odor; corn tortilla

Notes

Most often strongly β -hemolytic on blood agar

Pseudomonas aeruginosa Presumptive identification

Indole-negative Oxidase-positive Metallic/pearlescent, rough, pigmented, mucoid

Additional tests for definitive identification

Grape-like odor; corn tortilla

LIMITATIONS/additional factors

Rare Aeromonas spp. may resemble *P. aeruginosa*, but can be differentiated by positive spot indole test

Burkholderia cepacia isolates from CF patients can resemble P. aeruginosa

Staphylococcus aureus

O Presumptive identification

Catalase-positive

Tube/slide coagulase- or latex agglutination-positive

O Additional tests for definitive identification

Typically β-hemolytic colonies on blood agar

Notes

Tube coagulase required if non-hemolytic isolates from urine

Staphylococcus aureus

Presumptive identification

Catalase-positive

- Tube/slide coagulase- or latex agglutination-positive
- Additional tests for definitive identification

Typically β -hemolytic colonies on blood agar

LIMITATIONS/additional factors

S. schleiferi and S. lugdunensis may be slide coagulase-positive (clumpy, rather than complete agglutination); aforementioned species PYR-positive

S. saprophyticus may yield positive latex agglutination results

Staphylococcus lugdunensis

Presumptive identification

Gram-positive cocci Catalase-positive Tube coagulase-negative

O Additional tests for definitive identification

PYR-positive (deep ruby red); Polymyxin B-resistant; ornithine-positive

Notes

May be slide coagulase-positive or clumpy

Enterococcus spp.

Presumptive identification

GPC prs, chains (no clusters) Catalase-negative Non- β -hemolytic on blood agar (>1 mm diameter)

Additional tests for definitive identification

PYR-positive

Notes

Demonstrate an LAP-positive reaction with α -hemolytic *Enterococcus* spp. (improved specificity)

Enterococcus spp.

Presumptive identification

GPC prs, chains (no clusters) Catalase-negative Non-β-hemolytic on blood agar (>1 mm diameter)

• Additional tests for definitive identification

PYR-positive

LIMITATIONS/additional factors

Lactococcus garvieae may be misidentified as Enterococcus spp.

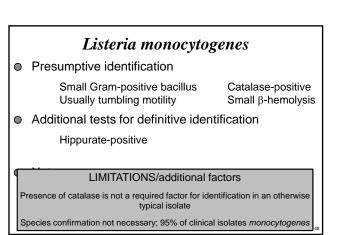
Aerococcus viridans

• Presumptive identification

α-hemolvtic

GPC (tetrads, clusters)

Catalase-negative


Additional tests for definitive identification

PYR-positive LAP-negative

Notes

Listeria monocytogenes Presumptive identification Small Gram-positive bacillus Catalase-positive Usually tumbling motility Small β-hemolysis Additional tests for definitive identification Hippurate-positive Notes

Isolate should be from blood culture or CSF culture *Listeria* can be non-motile after 35-37° C incubation

Streptococcus agalactiae

Presumptive identification

GPC (pairs, chains) Catalase-negative Small zone of $\beta\text{-hemolysis}$ on blood agar

Additional tests for definitive identification

Hippurate-positive OR CAMP-positive OR Lancefield group B via latex agglutination

Notes

Hippurate method not to be used on non-hemolytic colonies

Streptococcus agalactiae

Presumptive identification

GPC (pairs, chains) Catalase-negative Small zone of $\beta\text{-hemolysis}$ on blood agar

Additional tests for definitive identification

Hippurate-positive OR CAMP-positive OR Lancefield group B via latex agglutination

LIMITATIONS/additional factors

 $\beta\text{-hemolytic}$ Enterococcus spp. can be hippurate-positive

Many viridans group streptococci and non-hemolytic *S. agalactiae* are hippurate-positive

Streptococcus anginosus group

• Presumptive identification

GPC (pairs, chains) Catalase-negative CFU (<0.5 mm diameter); variable hemolysis

• Additional tests for definitive identification

Odor of butterscotch or vanilla OR Lancefield group F by latex agglutination

Notes

May be Lancefield group A, C, F, or G by latex agglutination

Streptococcus pneumoniae

• Presumptive identification

GPC (lancet-shaped in pairs)	Catalase-negative
lpha-hemolysis on blood agar	

 Additional tests for definitive identification Bile solubility-positive

Notes

~1% of *S. pneumoniae* with typical colony morphology may not be bile soluble

Streptococcus pyogenes

Presumptive identification

GPC (pairs, chains) Catalase-negative CFU (>0.5 mm diameter); sharp β -hemolysis

O Additional tests for definitive identification

PYR-positive OR Lancefield group A by latex agglutination

Notes

Careful observation of size and hemolysis, as *Enterococcus* spp. can demonstrate β -hemolysis

53

Viridans group Streptococcus Presumptive identification GPC (pairs, chains) Non-hemolytic or α-hemolysis Additional tests for definitive identification PYR-positive Bile solubility-negative if α-hemolytic Notes Aerococcus urinae are cocci in clusters/tetrads Pediococcus spp. are cocci in clusters/tetrads

Candida albicans

- Presumptive identification
 Budding yeast
- O Additional tests for definitive identification

"Feet" in less than 48 hours OR Germ tube-positive

Notes

Not easily separated from C. dubliniensis

Candida glabrata

• Presumptive identification

Small yeast in smear with no hyphae Better growth on chocolate agar than blood agar

Additional tests for definitive identification

Better growth on EMB agar than blood agar Rapid trehalose-positive at 42° C

Notes

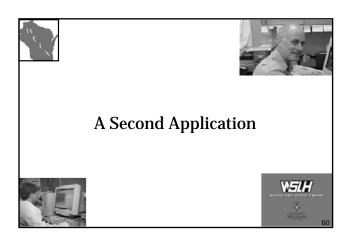
Cryptococcus neoformans

• Presumptive identification

Spherical pleomorphic budding yeast with no hyphae

- Additional tests for definitive identification
 - Urease-positive

Phenol oxidase-positive


Notes

Cannot differentiate from C. gattii

ANAEROBIC GRAM-NEGATIVES

Identification	ARAP/LKV Colony Morphology	Cell Morphology	Racteroides Rile Esculin Colony Morphology	Indole Reaction
Bacteroldes fragilis group	Large, convex	Regular	Large, convex, gray-black	Not Done
Bacteroldes areolyticus	Translucent, pitting the agar (catalase- negative with 15% H(O ₁)	Tiny rods, coccobacilli	No growth	Negative
RHophila wadsworthia	Tiny, translucent (catalase +++ with 13% H2O2)	Regular to filoments	Translucent with black center at 72 hours	Negative
Fusobacterium nucleatum	Opalescent, breaderumb	Fusiform, thin pointed	No growth	Positive
orphyromonas spp.	Small, translucent or opaque, fluoresce brick-red on allAP	Tiny coccobacilli	No growth	Positive
Prevotella Intermedia	Small, Immilizent or opagne, finoresce	Tmy enceobneilli	No growth	Persitive
Prevolella spp.	brick-red on LKV or aBAP			Negative
'eliionella spp.	Small, transparent or opaque, fluoresce brick-red on aBAP	Tiny diplococci	No growth	Negative

le 5. Abbreviated Id	entification of Anaerobic Gram	Positive Bacieria	
Identification	aBAP Colony Morphology	Cell Morphology	Indole
C. difficile	Large, flat colonies; barnyard (cow manure) smell; chartrense fluorescence	Thin rods, rare spores	Negative
C. perfringens	Large, irregular-shaped, double zone beta-hemolysis	Boxcar, large, square rods	Not done
C. septicum	Smoothly swarming	Thin rods, subterminal STORES	Negative
C. sordellii	Very large, lobate, irregular, flat	Thin rods, subterminal spores	Positive
C. tetani	Smoothly swarming but slow growing	Swollen terminal spores	Positive
Peptosirepiococcus SDD.	Small, peaked, circular	Cocci, pairs and chains	Not done
Propionibacterium acnes	Small, opaque, enamel-white, circular (catalase+ with 15% H-O.)	Coryneform rods	Positive

CLSI M35-A2 AND BIOTERRORISM

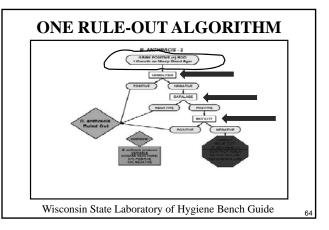
- Changes in recommendations for handling cultures on the basis of unsuspected exposure to agents of bioterrorism
- Colonial growth examined in biological safety cabinet (while wearing gloves) until agents of bioterrorism or highly-pathogenic agents ruled out

Blood cultures CSF cultures Lymph node cultures

CLSI M35-A2; 2008

MORE...

- Unidentified Gram-negative, Gram-variable bacillus, or Gram-negative coccobacillus that only grows on blood and chocolate agar only (not MacConkey) is handled with extreme caution until rule-out
- Gram staining and wet mount preparation takes place in biological safety cabinet; wear gloves


CLSI M35-A2; 2008

THIS IS SERIOUS

- Procedures known to create aerosols (catalase, others) should be confined to biological safety cabinet with extra care or avoided all together until rule-out
- Automated systems may pose danger with respect to these organisms; may not generate accurate identification or susceptibility data in the first place

Should not be performed until bioterrorism agent possibility has been eliminated

J. Hosp. Infect. **22**: 159-162; 1992 Diagn. Microbiol. Infect. Dis. **60**: 241-246; 2008

VITAL STATISTICS--2009 EXERCISE

• Two samples sent to 116 Wisconsin laboratories

101 (87%) reported data 15 did not report results

- Sample BPE 09-2-1 Bacillus megaterium Sample BPE 09-2-2 Bacillus licheniformis
- Samples intended to simulate *Bacillus anthracis* in the context of rule-out testing

Wisconsin State Laboratory of Hygiene Audioconference; 120909 65

RULE-OUT EXERCISE--I

Test	Sample 1: Expected Result	% Correct (Reporting Labs)	Sample 2: Expected Result	% Correct (Reporting Labs)
α -hemolysis	Negative	89.4% (85)	Negative	96.3% (82)
β-hemolysis	Negative	98.9% (87)	Positive	38.4% (86)
Catalase	Positive	97.8% (89)	Positive	91.0% (89)
Indole	Negative	100% (42)	Negative	100% (44)
Oxidase	Negative	85.2% (54)	Negative	64.8% (54)
Urease	Positive	53.8% (13)	Negative	76.9% (13)
Motility	Negative	98.1% (54)	Positive	94.3% (53)
Growth on Mac/EMB	Negative	90.9% (77)	Negative	98.7% (77)

Wisconsin State Laboratory of Hygiene; Fall 2009

Test	Sample 1: Expected Result	% Correct (Reporting Labs)	Sample 2: Expected Result	% Correct (Reporting Labs)
α -hemolysis	Negative	89.4% (85)	Negative	96.3% (82)
β-hemolysis	Negative	98.9% (87)	Positive	38.4% (86)
Catalase	Positive	97.8% (89)	Positive	91.0% (89)
Indole	Negative	100% (42)	Negative	100% (44)
Oxidase	Negative	85.2% (54)	Negative	64.8% (54)
Urease	Positive	53.8% (13)	Negative	76.9% (13)
Motility	Negative	98.1% (54)	Positive	94.3% (53)
Frowth on Mac/EMB	Negative	90.9% (77)	Negative	98.7% (77)

RULE-OUT EXERCISE--III

Test	Sample 1: Expected Result	% Correct (Reporting Labs)	Sample 2: Expected Result	% Correct (Reporting Labs)
α-hemolysis	Negative	89.4% (85)	Negative	96.3% (82)
β-hemolysis	Negative	98.9% (87)	Positive	38.4% (86)
Catalase	Positive	97.8% (89)	Positive	91.0% (89)
Indole	Negative	100% (42)	Negative	100% (44)
Oxidase	Negative	85.2% (54)	Negative	64.8% (54)
Urease	Positive	53.8% (13)	Negative	76.9% (13)
Motility	Negative	98.1% (54)	Positive	94.3% (53)
Growth on Mac/EMB	Negative	90.9% (77)	Negative	98.7% (77)

Wisconsin State Laboratory of Hygiene; Fall 2009

68

THE END

 Rapid identification algorithms can benefit both the laboratory and patient care

- Requires sufficient knowledge base in terms of knowing principles and limitations
- Can (importantly) be applied to rule-out situations
- Use an algorithm-based approach for bioterrorism rule-out exercises