BATTLING INFECTIONS OF THE CENTRAL NERVOUS SYSTEM

Organisms, Risk Factors, and Laboratory Diagnostics

Blake W. Buchan, PhD, D(ABMM) Email: <u>bbuchan@mcw.edu</u> Phone: 414-805-6988

Outline

- Overview of meningitis
- Address P.A.C.E. Goals
 - Identify organisms commonly associated with CNS infection
 - Discuss the factors which put patients at risk for these infections
 - Explain the strengths and weaknesses of current diagnostic methods
- Clinical and financial impact of rapid results
- Conclusion

CNS Infections

Meningitis vs. encephalitis

- Meningitis
 - Infection/ inflammation of meninges (3 layers)
 - Brain, spinal cord, or intracranial spaces (CSF)
 - Bacterial, viral, fungal

Encephalitis

- Infection/inflammation of brain parenchyma
 - Infections & non-infectious causes (Injury, cancer, drugs)
 - Diffuse \rightarrow more typically viral
 - Cerebritis is more focal presentation

CNS Infections

Routes of infection

- Direct invasion
 - "Natural" \rightarrow Access through sinus, conjunctiva
 - URT flora, amoeba, HSV/GBS (neonates)
 - "Traumatic" \rightarrow Open cranial or spinal wound
 - Environmental GNR, Skin flora, Mycobacteria, fungi
 - "latrogenic" \rightarrow Medical device related, e.g. shunt, drain
 - Skin flora
- Haematogenous
 - Following infection
 - Pneumonia, BSI
- Endogenous
 - Reactivation of latent infection \rightarrow HSV, CMV, EBV, JC

Organisms

Common causes

- <u>Viruses (65-75%)</u>
 - Commonly self-resolving "aseptic meningitis"
 - May be life-threatening in immunecompromised host
- <u>Bacteria (15-20%)</u>
 - Severe, acute meningitis
 - High mortality if untreated
- <u>Fungi (5-8%)</u>
 - Most commonly yeast, dimorphic fungi
 - More common in compromised
- <u>Amoebic (<1%)</u>
 - Associated with environmental exposure
 - Almost uniformly fatal

CSF characteristics

■ <u>General rule</u>

- Subject to variation by species, severity of infection, etc.
- Viral may initially have neutrophilic predominance

Test	Appearance	Pressure	WBC/µL	Protein mg/ dL	Glucose mg/ dL	Chloride
Normal CSF	Clear	90 – 180 mm	0-8 lymph.	15-45	50-80	115-130 mEq/L
Acute bacterial meningitis	Turbid	Increased	1000 -10000	100 - 500	< 40	Decreased
Viral meningitis	Clear	Normal to moderate increase	5-300, rarely >1000	Normal to mild increased	Normal	Normal
Fungal meningitis	Clear	Increased	40-400 mixed	50-300	Decreased	Decreased

Risk factors

■ <u>Age</u>

- Neonates

- Congenital infection \rightarrow CMV, HSV
- Vertical transmission during birthing \rightarrow HSV, GBS
- Young children
 - High rate of URT colonization \rightarrow S. pneumoniae, H. influenzae, N. meningitidis,
 - Questionable hygiene \rightarrow Enterovirus

Immune state

- Compromised \rightarrow HIV/AIDS, HSCT, SOT
 - Typically more severe in compromised
 - Often re-activation of latent infection (VZV, HSV, JCV); fungal infections

Medical hardware

- CNS shunts/drains/catheters
 - Skin flora, GNRs → biofilm

BACTERIAL MENINGITIS

Clinical impact of bacterial meningitis

Acute bacterial meningitis is life-threatening condition (i.e. critical value!)

- Critical role for Laboratory
 - Differentiate from viral meningitis (more common/less severe)
 - Benefit from prompt abx

General risk factors

- Age, colonization status, indwelling devices

Demographic	Common Bacterial Etiology
Neonate	S. agalactiae, E. coli, L. monocytogenes
Infants, young children	H. influenzae, S. pneumoniae, N. meningitidis
Young adult	N. meningitidis
Adult	S. pneumoniae, N. meningitidis
Elderly	S. pneumoniae, L. monocytogenes, Enterobacteriaceae, NLFs
CNS shunt/drain	CoNS, S. aureus, Corynebacterium spp., Enterobacteriaceae, NLFs

Initial surveys in early 1980's

- Attack rate of 3.0-6.0 cases/100,000
 - 10-20x higher for children <1 yoa
- Common agents...source of infection?
 - 75-85% \rightarrow H. influenzae, S. pneumoniae, N. meningitidis
 - 2-5% \rightarrow S. agalactiae (neonates, now elderly as well) L. monocytogenes
 - 2-5% \rightarrow Enterobacteriaceae, Staph spp., Strep spp., P. aeruginosa

Vaccine impact?

Vaccine impact?

- Dramatic reduction, changing epidemiology
 - HiB conjugate (1990) \rightarrow >99% reduction from 54 to 0.3 cs/100k
 - Pneumococcus (2000)
 - <u>Pediatric conjugate 7/13</u>: 97% effective, 30-60% decrease in pneumococcal meningitis
 - <u>Adult polysaccharide 23</u>: High risk adults \rightarrow includes 75-90% of CSF isolates
 - *N. meningitidis* ACYW (2005) B (2015) \rightarrow 65% reduction from 0.92 to 0.33 cs/100k
 - Not recommended for general population in USA (low risk)
 - Recommended for laboratory workers (60-100x higher incidence than general public), college freshmen

- Current causes of bacterial meningitis
 - WDL (2 years)
 - CoNs leading CSF shunts
 - real vs. contaminant!
 - Broth or plate only? Single CFU? 1st quadrant?

ID	# cultures	% cultures
S. epidermidis	39	35.5%
CoNS	5	4.5%
Corynebacterium	1	0.9%
P. acnes	4	3.6%
Bacillus spp.	2	1.8%
Micrococcus	1	0.9%
S. pneumoniae	4	3.6%
N. meningitidis*	3	2.7%
E. coli	4	3.6%
S. marcessens	3	2.7%
Enterococcus	6	5.5%
P. aeruginosa	7	6.4%
Enterobacter spp.	4	3.6%
S. agalactiae	2	1.8%
S. pyogenes	1	0.9%
Acinetobacter	3	2.7%
Viridans gr. Strep.	5	4.5%
S. aureus	4	3.6%
P. mirabilis	1	0.9%
Mixed pathogens	5	4.5%
Candida spp.	2	1.8%
C. neoformans	4	3.6%
Total	110	

- Direct exam
- Antigen
- Culture
- NAAT/PCR

Direct exam

- Critical value!
 - Critical value \rightarrow establish acceptable TAT for reporting (<2 h)
 - Cellularity (RBCs, PMN vs. Monos)
 - Bacteria (presence, relative abundance, morph, location)
- Sensitivity?

Direct exam

- Critical value!
 - Critical value \rightarrow establish acceptable TAT for reporting (<2 h)
 - Cellularity (RBCs, PMN vs. Monos)
 - Bacteria (presence, relative abundance, morph, location)

Sensitivity? <u>Concentrate</u>!

- Stains
 - Gram stain \rightarrow Morphology, GP/GN
 - Variable sensitivity (LoD ~ 10⁶ cfu/mL), small GNR
 - Specificity for "rare GPC"
 - Acridine Orange \rightarrow Morphology only
 - Fluorescent nucleic acid stain
 - Increased sensitivity (LoD ~ 10⁴ cfu/mL)
 - <u>Sensitivity</u> "Rare GNR"; <u>Specificity</u> "Rare GPC"

	Sensitivity (%) ^a	
Pathogen	CSF Gram stain	
Haemophilus influenzae	25-65	
Streptococcus pneumoniae	69–93	
Neisseria meningitidis	30-89	
Listeria monocytogenes	10-35	
Streptococcus agalactiae	80-90	
Streptococcus pyogenes	66–73	
Streptococcus suis	50	
Staphylococcus aureus	20-44	

CLINICAL MICROBIOLOGY REVIEWS, July 2010, p. 467-492

Journal of Medical Microbiology (2005), 54, 843-850

Antigen

- Types
 - Latex agglutination, Enzyme assay
 - *N. meningitidis*, HiB, S. pneumoniae, GBS
 - Simple, faster than culture (10-20 min.)
- Sensitivity?
 - vs. Gram stain? Non-viable organisms? Abx?

Antigen

- Types
 - Latex agglutination, Enzyme assay
 - N. meningitidis, HiB, S. pneumoniae, GBS
 - Simple, faster than culture (10-20 min.)

Sensitivity?

- vs. Gram stain? Non-viable organisms? Abx?
 - Sensitivity similar or inferior to Gram stain
 - No added sensitivity for patients on Abx
 - Potential for "false sense of security" w/ neg result
 - "No substantial benefit beyond concentrated Gram stain"

918 CSF specimens	Gram stain result	No. (%) of specimens	
38 Culture (+)	Grain stain result	BAT positive	BAT negative
4 GS (+), Culture (-)	Positive Negative	$\frac{26}{3} \frac{(62)}{(7)^a}$	11 (26) 2 (5)

Specimens with organisms not detected by BAT and Gram stain

	-		
Organism	Total no. of	No. (%) of specimens not detected by:	
	specimens	BAT	Gram stain
Detected by culture ^a			
Streptococcus pneumoniae	22	6 (27)	3 (14)
Group B Streptococcus sp	ecies 7	3 (43)	0 (0)
Neisseria meningitidis	7	3 (43)	1 (14)
Haemophilus influenzae ty	peb 2	0 (0)	1 (50)
Not detected by culture ^b	4	1 (25)	0 (0)
Total	42	13 (31)	5 (12)

JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 2010, p. 1504-1505

Antigen

- Types
 - Latex agglutination, Enzyme assay
 - N. meningitidis, HiB, S. pneumoniae, GBS
 - Simple, faster than culture (10-20 min.)

Sensitivity?

- vs. Gram stain? Non-viable organisms? Abx?
 - Sensitivity similar or inferior to Gram stain
 - No added sensitivity for patients on Abx
 - Potential for "false sense of security" w/ neg result
 - "No substantial benefit beyond concentrated Gram stain"

918 CSF specimens	Gram stain result	No. (%) of specimens	
38 Culture (+)	Grain stain result	BAT positive BAT	negative
4 GS (+), Culture (-)	Positive	26(62) 11	1 (26)
	Negative	3(1) 2	()

Specimens with organisms not detected by BAT and Gram stain

	-		
Organism	Total no. of	No. (%) of specimens not detected by:	
	specificitis	BAT	Gram stain
Detected by culture ^a			
Streptococcus pneumoniae	22	6 (27)	3 (14)
Group B Streptococcus spo	ecies 7	3 (43)	0 (0)
Neisseria meningitidis	7	3 (43)	1 (14)
Haemophilus influenzae ty	pe b 2	0 (0)	1 (50)
Not detected by culture ^b	4	1 (25)	0 (0)
Total	42	13 (31)	5 (12)

JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 2010, p. 1504-1505

MIC.22550 – Back-up cultures required on <u>both</u> AG-positive and negative CSF specimens

Culture

- "Gold standard"
 - Tube #2 \rightarrow Centrifuge or plate entire volume (<1 mL)
 - Aerobic culture (BAP, CHOC) + Thio broth
- Sensitivity?

Tube 1 – Chemistry (Glucose, Protein) Tube 2 – Microbiology (GS, Culture) Tube 3 – Hematology (Cell count, Dif)

Culture

- "Gold standard"
 - Tube #2 \rightarrow Centrifuge or plate entire volume (<1 mL)
 - Aerobic culture (BAP, CHOC) + Thio broth
- Sensitivity?
 - 80-95%
 - Factors impacting culture sensitivity
 - Organisim: 95% H. flu, 90% S. pneumo, 80% N. mening
 - **CSF volume:** some infections $\leq 10^3$ CFU/mL
 - Abx usage: 60-80% <u>decrease</u> in sensitivity
 - Gold standard: Cytology (>1000 WBC/uL, >80% PMN)

Blood culture added benefit?

Tube 1 – Chemistry (Glucose, Protein) Tube 2 – Microbiology (GS, Culture) Tube 3 – Hematology (Cell count, Dif)

Culture Sensitivity vs. Duration of Abx

None	< 4h	> 4h	>12 h	>24 h
84%	72%	55%	58%	59%
(146/159)	(18/25)	(26/47)	(19/33)	(17/29)

PEDIATRICS Volume 122, Number 4, October 2008

Culture

- "Gold standard"
 - Tube #2 \rightarrow Centrifuge or plate entire volume (<1 mL)
 - Aerobic culture (BAP, CHOC) + Thio broth
- Sensitivity?
 - 80-95%
 - Factors impacting culture sensitivity
 - Organisim: 95% H. flu, 90% S. pneumo, 80% N. mening
 - CSF volume: some infections ≤10³ CFU/mL
 - Abx usage: 60-80% <u>decrease</u> in sensitivity
 - Gold standard: Cytology (>1000 WBC/uL, >80% PMN)

Blood culture added benefit?

Tube 1 – Chemistry (Glucose, Protein) Tube 2 – Microbiology (GS, Culture) Tube 3 – Hematology (Cell count, Dif)

Culture Sensitivity vs. Duration of Abx

None	< 4h	> 4h	>12 h	>24 h
84% (146/159)	72% (18/25)	55% (26/47)	58% (19/33)	59% (17/29)

PEDIATRICS Volume 122, Number 4, October 2008

Sensitivity of GS, BC, CSF Culture

Positive CSF Gram-stain results ^a	95/150 (63)
Positive blood culture results ^b	123/187 (66)
Positive CSF culture results ^c	136/154 (88)

PEDIATRICS Volume 122, Number 4, October 2008

Culture

- "Gold standard"
 - Tube #2 \rightarrow Centrifuge or plate entire volume (<1 mL)
 - Aerobic culture (BAP, CHOC) + Thio broth
- Sensitivity?
 - 80-95%
 - Factors impacting culture sensitivity
 - Organisim: 95% H. flu, 90% S. pneumo, 80% N. mening
 - **CSF volume:** some infections $\leq 10^3$ CFU/mL
 - Abx usage: 60-80% <u>decrease</u> in sensitivity
 - Gold standard: Cytology (>1000 WBC/uL, >80% PMN)

Blood culture added benefit?

Tube 1 – Chemistry (Glucose, Protein) Tube 2 – Microbiology (GS, Culture) Tube 3 – Hematology (Cell count, Dif)

	Sensitivity (%) ^a		
Pathogen	Blood culture	CSF Gram stain	
Haemophilus influenzae	25-90	25-65	
Streptococcus pneumoniae	60–90	69–93	
Neisseria meningitidis	40-60	30-89	
Listeria monocytogenes	10-75	10-35	
Streptococcus agalactiae	80-85	80-90	
Streptococcus pyogenes	60-65	66-73	
Streptococcus suis	50	50	
Staphylococcus aureus	75-100	20-44	

NAAT/PCR

- Potential advantages
 - Speed, sensitivity, less impact of abx treatment
 - Highly desirable for *N. meningitidis*
 - Lowest GS and culture sensitivity among bacterial pathogens
 - Rapidly progressing and fatal
- Performance
 - Sensitivity: 90-97%; Specificity: >99%
 - Result available in 2-3 h
 - ~20% decrease in sensitivity if abx

Gram staining, culture, and PCR of CSF for diagnosis of meningococcal meningitis in 38 infected patients

Test	No. of	samples	Sensitivity	Specificity	
Test	Positive Negative		(%)	(%)	
Gram staining	25	13	66	100	
Culture	21	17	55	100	
Gram staining culture	33	5	87	100	
PCR	37	1	97	99.6	

JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2003, p. 3851-3853

Clinical presentation	PCR-posit	ive ^a	LA-posit	ive ^a	Culture-positive		
	CSF	Blood	CSF	Blood	CSF	Blood	
Meningitis	27 (100)	11 (40)	12 (57)	9 (43)	12 (43)	11 (41)	

Table 2. Influence of antibiotic therapy on the result by diagnostic method in blood and cerebrospinal fluid (CSF)

	Test ^a	Tests done	Positive (%)	p value
Collection of CSF samples				
Before onset	PCR	21	21 (100)	
of antibiotic treatment	LA	15	9 (60)	
	Culture	23	12 (52)	
After onset	PCR	16	13 (81)	0.07
of antibiotic treatment	LA	9	2 (22)	0.10
	Culture	14	1 (7)	0.01

Clin Microbiol Infect 2006; 12: 137-141

NAAT/PCR

- Potential advantages
 - Speed, sensitivity, less impact of abx treatment
 - Highly desirable for *N. meningitidis*
 - Lowest GS and culture sensitivity among bacterial pathogens
 - Rapidly progressing and fatal
- Performance
 - Sensitivity: 90-97%; Specificity: >99%
 - Result available in 2-3 h
 - ~20% decrease in sensitivity if abx
- PCR considered "gold standard" for *N. meningitidis* in UK
 - Observed a 56% increase in lab-confirmed meningococcal disease

Gram staining, culture, and PCR of CSF for diagnosis of meningococcal meningitis in 38 infected patients

Test	No. of	samples	Sensitivity	Specificity	
Test	Positive	Positive Negative		(%)	
Gram staining	25	13	66	100	
Culture	21	17	55	100	
Gram staining culture	33	5	87	100	
PCR	37	1	97	99.6	

JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2003, p. 3851-3853

Clinical presentation	PCR-posit	ive ^a	LA-posit	ive ^a	Culture-positive		
	CSF	Blood	CSF	Blood	CSF	Blood	
Meningitis	27 (100)	11 (40)	12 (57)	9 (43)	12 (43)	11 (41)	

Table 2. Influence of antibiotic therapy on the result by diagnostic method in blood and cerebrospinal fluid (CSF)

	Test ^a	Tests done	Positive (%)	p value
Collection of CSF samples				
Before onset	PCR	21	21 (100)	
of antibiotic treatment	LA	15	9 (60)	
	Culture	23	12 (52)	
After onset	PCR	16	13 (81)	0.07
of antibiotic treatment	LA	9	2 (22)	0.10
	Culture	14	1 (7)	0.01

Clin Microbiol Infect 2006; 12: 137-141

NAAT/PCR

- Obstacles to NAAT
 - Few FDA-cleared options \rightarrow LDT?
 - Complex to design
 - Inhibitors Elevated proteins, globulin, cellular infiltrates, hemin
 - <u>Targets</u> Binding affinity/strain diversity
 - Lab/lab variability
 - Lack of clinical samples to validate
 - Singleplex lacks broad applicability
 - indistinguishable clinical presentation among bacterial (and sometimes viral) meningitis cases

Interlaboratory comparison of N. meningitidis NAAT

NAAT/PCR

- Obstacles to NAAT
 - Few FDA-cleared options \rightarrow LDT?
 - Complex to design
 - Inhibitors Elevated proteins, globulin, cellular infiltrates, hemin
 - <u>Targets</u> Binding affinity/strain diversity
 - Lab/lab variability
 - Lack of clinical samples to validate
 - Singleplex lacks broad applicability
 - indistinguishable clinical presentation among bacterial (and sometimes viral) meningitis cases
 - Multiplex?
 - More complex
 - Annealing temps., bacterial v. bacterial + viral?

	PCR-positive patients				
Organism	Culture confirmed	Probable	Sensitivity		
Neisseria meningitidis Streptococcus pneumoniae Haemophilus influenzae type b	25/27(92.6%) 17/18(94.4%) 7/8(87.5%)	6/6 (100%) 7/8 (87.5%) 0 (0)	93.9% (86.8–93.9) 92.3% (83.4–92.3) 88% (53.9–88)		

VIRAL MENINGITIS

Clinical impact of viral meningitis

"Aseptic meningitis"

- Mild/self-resolving to acute and life-threatening
- ~35,000 hospitalizations/yr → 14/100,000
 - Critical role for Laboratory
 - Differentiate bacterial meningitis (less common/more severe) and severe viral etiologies
 - Management: Antiviral Rx? Supportive therapy?

General risk factors

- Age
- Immunecompromise (HIV or suppressive therapies)
- Exposure
 - Outdoor activities, geographic location, season
 - Endemic areas for virus/vector
 - Outdoor activities
 - Community pools, daycare

Prevalence

- Viral etiologies are the most common causes of meningitis (70-80%)
 - 50-70% of "aseptic meningitis" go without specific diagnosis/viral ID
 - Demographic most affected depends on specific virus

Common agents...source of infection?

- Enteroviruses
 - > 10 million cases/yr in US \rightarrow direct person-person spread (feces, saliva, fomites, water)
- Arboviruses
 - ~100-200k infections/yr in US, ~1% severe symptoms \rightarrow Arthropod-borne (mosquito, tick)
- Herpesviruses
 - Recurrent meningitis in young adults, severe infection in compromised host \rightarrow reactivation
- Polyomaviruses
 - Exclusively compromised host, 1-8% of HIV patients pre-HAART \rightarrow reactivation
- Vaccine impact?

- Culture
- Serology
- NAAT/PCR

Best method depends on...

specific virus, time from onset of symptoms, available tests, specimen

	Effectiveness ^b of diagnosis by:							
Virus	PC	R	Serol	ogy ^c		Culture of	specimens	
	Serum	CSF	Serum	CSF	Throat	Rectal	Blood	CSF
Arboviruses WNV	$+^{d}$ $+^{d}$	$+^{d}$ $+^{d}$	++ ++	++ ++			++ -	+/-
Enteroviruses Nonpoliovirus Poliovirus	+ +	++ ++	$^+$ $+^e$	- -	+ +	++ ++	+/-	++ -
Herpesviruses CMV EBV HHV-6 HSV-1, and HSV-2 VZV	+ + +/- - ++	++ + +/- ++ +	+ ++ +/- +/- + e	++ ++ - + ++	+ +/- - -	 	+ + / - + / - + d	Rare +/- + ^d +
JCV	_	++	_	_	_	_	_	_

CLINICAL MICROBIOLOGY REVIEWS, Oct. 2004, p. 903–925

Culture

- Traditional "Gold standard"
 - Prepare monolayer of permissive cells (<u>CAP MIC.61180</u>)
 - Green monkey kidney, MRC-5, A549, MDCK
 - Seed to microwell plate or culture tube
 - Inoculate w/ specimen
 - Antibiotics non-sterile site, lab contamination
 - Incubate depending on virus
 - Observe for CPE
 - On regular schedule, typically every 48-72
 - Cell lysis, vacuolization, syncytia, inclusion bodies
 - Semi-specific
 - Stain w/ panel of virus specific Abs
 - Final ID

Culture - Disadvantages

- Poorly sensitive
 - CSF culture yield especially low, not typically recommended for diagnosis
 - HSV ~ 20% sensitive, EVs 30-35% sensitive, JC not cultivable using standard cell lines
 - Potentially due to presence of neutralizing Ab, low VL in CSF
 - Preventing uptake of viruses by host cells

Extended TAT

- Growth rate of some viruses e.g. VZV, can take up to 14-28 days (CAP MIC.61210)
 - Limits clinical utility for diagnosis

Technical aspects of culture

- Maintaining multiple cell lines
- Contamination
- Maintain proficiency of personnel

Increasing Ab concentration

PRNT

Detection methods

Culture - Advantages

- High specificity
 - Growth indicates viable virus, infectious etiology
- Broad inclusivity
 - Not limited by design of PCR target, availability of specific Ab
 - Discovery of novel viruses
- Increased specificity
 - Plaque-reduction neutralization assay (PRNT)
 - Add virus + dilutions of specific AB to each row
 - Determine 50% reduction from no ab control
 - Differentiate b/w closely related viruses (e.g. *flaviviridae*)
- Epidemiology
- Antiviral resistance testing

Enteroviruses

Virus

- Picornaviridae (enterovirus, echovirus, coxsackievirus)
 - Non-enveloped >60 serotypes
- Epidemiology
 - Summer-fall, primarily in children <5 yoa
 - Transmitted in feces, saliva, environmental sources (water)
 - 80-90% of aseptic meningitis when etiology is found
- Symptoms
 - Largely asymptomatic or sub-clinical
 - Non-specific rash, fever, headache, URT symptoms, etc.
 - <5% Progress to more severe symptoms</p>
 - Severe meningitis/encephalitis, Guillian-Barre syndrome
 - Cause severe sepsis syndrome in newborns
 - Pleocytosis not significantly differet from controls in <1mo

Enteroviruses

Diagnostics

- <u>Culture</u>
 - CSF \rightarrow Insensitive (20-60%), slow (5-8 days)
 - Resp/GI \rightarrow non-specific (shed in stool, resp for 4-16 weeks)

■ <u>Serology</u>

- Non-specific, high rate of seropositivity
- Many serotypes complicate diagnosis

■ <u>NAAT</u>

- Fast → <24 h</p>
- Comprehensive \rightarrow 5'UTR target encompasses all serotypes
- Sensitive $\rightarrow 10^2 \cdot 10^3$ copies/mL
- Surrogate less invasive specimens...CSF vs. Blood?
 - Viremia in only 40-60% of CSF (+) patients \rightarrow not rule out EV meningitis
 - EVs shed in resp, GI...NAATs may cross-react with rhinovirus

http://www.biocyclopedia.com/index/medicinal_microbiology/images/38_large.jpg
Xpert EV (2009)

■ Xpert EV (Cepheid)

- Qualitative detection of >60 EV serotypes \rightarrow 140 ul CSF, 2.5 h TAT
 - coxsackievirus, echovirus, and enterovirus

JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 2011, p. 528-533

Xpert EV (2009)

Performance

- Multicenter
 - 199 prospective, 235 retrospective
 - Compared to LDTs and culture
- Sensitivity: 95%, specificity: 100%
 - Culture positive in only 35% of specimens

TABLE 1. Xpert EV assay for diagnosis of enteroviral meningitis (n = 434)

Site		No.	of sample	s ^a			$\%^b$
Site	Total	ТР	FP	TN	FN	Sensitivity	Specificity
1	15	2	0	13	0	100	100
2	34	8	0	24	2	80	100
3	44	3	0	41	0	100	100
4	84	27	0	57	0	100	100
5	22	6	0	16	0	100	100
6	235	61	0	170	4	93.85	100
Total	434	107	0	321	6	94.69	100

Korean J Pediatr 2015;58(3):102-107

Xpert EV (2009)

Performance

- Multicenter
 - 199 prospective, 235 retrospective
 - Compared to LDTs and culture
- Sensitivity: 95%, specificity: 100%
 - Culture positive in only 35% of specimens

Drawbacks

- May suffer cross-reactivity w/ Rhinovirus
 - ...but this should not be in CSF
- Does not include hPeV
 - 20-30% of "enteroviral aseptic meningitis"
 - Indistinguishable symptoms
 - Similar seasonality (summer-fall)

	Walters 2011	Sharpe 2013	Han 2013	Seo 2015
Location	USA	USA	Korea	Korea
EV	8.3%	14.0%	21.3%	7.5%
HPeV 3	2.4%	17.0%	6.5%	3.4%

Majority of patients < 5 years of age

Xpert EV (2009)

Clinical Impact

- EV leading cause of meningitis in <u>children</u> < 5 yoa
 - Rapid result, <u>suggests</u> non-bacterial meningitis
- 50 children presenting with meningitis symptoms, EV positive
 - If EV positive result reported in < 24 h</p>
 - Abx usage reduced by ~20 h
 - Hospital charges reduced by ~\$2,800

	Time from	Time from Specimen Collection to Positive PCR Report						
Variable	$\leq 24 \text{ h} \\ (n = 17)$	>24 h (n = 33)	Difference	Р				
Antibiotic duration								
Mean (h)	22.6	42.2	19.6	0.006				
Range	0 - 48	0-106						
Hospital charges								
Mean	\$3035	\$5833	\$2798	0.001				
Range	\$891-5937	\$1406-16 761	-					

Arboviruses

Virus

– Diverse group of viruses transmitted by arthropods

- Togaviridae Eastern Equine, Western Equine, Venezuelan Equine
- Bunyaviridae La Crosse, Jamestown Canyon, California encephalitis
- Flaviviridae West Nile, St. Louis, Powassan, Tickborne encephalitis
- Epidemiology
 - Largely driven by season/climate/vector range
 - Reservoir (amplifying host)
- Likely underreported, >99% asymptomatic
- Symptoms
 - Fever, rash \rightarrow meningitis, encephalitis, flaccid paralysis
 - Attack rate, severity of symptoms highly variable
 - Hemorrhagic fever groups
 - Dengue, YFV, Rift Valley, Crimean-congo

Clin Exp Vaccine Res 2014;3:58-77

Arboviruses – USA, 2014

2014. MMWR Morb Mortal Wkly Rep 2015;64:929-34

		Virus type										
	Wes (N =	t Nile 2,205)	La C (N	rosse = 80)	Jame Car (N	estown nyon = 11)	St. ence (N	Louis phalitis = 10)	Pow (N	vassan l = 8)	Easter ence (N	n equine phalitis I = 8)
Characteristic	No.	(%)	No.	(%)	No.	(%)	No.	(%)	No.	(%)	No.	(%)
Age group (yrs) [†]												
<18	65	(3)	72	(90)	4	(36)	0	(0)	0	(0)	0	(0)
18–59	1,165	(53)	4	(5)	1	(9)	6	(60)	3	(38)	4	(50)
≥60	974	(44)	4	(5)	6	(55)	4	(40)	5	(62)	4	(50)
Sex												
Male	1,403	(64)	38	(48)	5	(45)	4	(40)	6	(75)	4	(50)
Female	802	(36)	42	(53)	6	(55)	6	(60)	2	(25)	4	(50)
Period of illness onset												
January–March	3	(<1)	1	(1)	0	(0)	1	(10)	0	(0)	0	(0)
April–June	58	(3)	1	(1)	3	(27)	1	(10)	3	(38)	0	(0)
July–September	1,985	(90)	73	(91)	8	(73)	6	(60)	5	(62)	8	(100)
October–December	159	(7)	5	(6)	0	(0)	2	(20)	0	(0)	0	(U)
Clinical syndrome												
Nonneuroinvasive	858	(39)	4	(5)	5	(45)	4	(40)	1	(13)	0	(0)
Neuroinvasive	1,347	(61)	76	(95)	6	(55)	6	(60)	7	(88)	8	(100)
Encephalitis	620	(28)	63	(79)	3	(27)	4	(40)	5	(62)	6	(75)
Meningitis	565	(26)	12	(15)	2	(18)	1	(10)	2	(25)	1	(13)
Acute flaccid paralysis [§]	132	(6)	0	(0)	1	(9)	1	(10)	0	(0)	1	(13)
Other neurologic	30	(1)	1	(1)	0	(0)	0	(0)	0	(0)	0	(0)
Outcome												
Hospitalization	1,589	(72)	79	(99)	7	(64)	10	(100)	8	(100)	8	(100)
Death	97	(4)	3	(4)	0	(0)	0	(0)	0	(0)	2	(25)

Arboviruses

Diagnostics

- <u>NAAT</u>
 - Blood \rightarrow Viral replication/viremia precedes CNS involvement by 5-8 d
 - Non-specific fever/rash
 - Not detectable by time of CNS symptom onset
 - CSF \rightarrow May be detected early in CNS symptoms
 - Still poor sensitivity ~ 60-70%

NAAT not recommended as primary test for arboviral meningitis

...but...

Specificity of NAAT is useful in epidemiologic studies

Arboviruses

Diagnostics

- <u>Serology</u>
 - Blood \rightarrow not specific for CNS involvement
 - IgG persists for many years, if not life
 - IgM persists for 3-12 months
 - CSF \rightarrow Preferred method
 - Intrathecal IgM indicates recent viral infection likely cause

Method - IFA

- Infected host cells spotted to slide
 - Serum added, observe for fluorescence
 - Often multiple arbos on panel \rightarrow same symptoms
- Cross-reactive!
 - PRNT to definitively ID the specific arbovirus present

Virus

- HSV, VZV, CMV, HHV-6, EBV
- Epidemiology
 - Meningitis resulting form re-activation of latent infection
 - Competent HSV, VZV
 - Compromised VZV, CMV, HHV-6, EBV

Symptoms

- Clinical presentation consistent with meningitis
 - Fever, headache, photophobia
- Severe/life-threatening
 - Immunosuppressed
 - Neonates

Site of latency

HSV-1

Herpesviruses

HSV

<u>Clinical</u>

- HSV- 2 \rightarrow Recurrent aseptic meningitis (Mollaret's)
 - Immune-competent, young adults
 - Self-resolving, optimal treatment not established
- HSV-1 \rightarrow Sporadic encephalitis
 - More common in compromised/HIV
 - Life-threatening, requires immediate treatment
 - 20% mortality, >95% of cases suffer long term neurologic defects

HSV-2

Simplexa HSV (2014)

- Simplexa (Focus)
 - <u>Qualitative</u> detection of HSV-1 and HSV-2 \rightarrow 50 uL CSF, 1 h TAT

Simplovo USV	Simplexa	Roche ASR HSV-1/2			
	HSV-1/2 Direct	Positive	Negative	HSV Type Indeterminate ^c	
Performance	HSV-1				
Cindle contex	Positive	11	0	1	
- Single center	Negative	0	85	3 ^{<i>d</i>}	
 100 retrospective characterized CSF 					
Compared to LDTs	HSV-2				
– <u>Sensitivity:</u> HSV-1: 100%, HSV-2: 100%	Positive Negative	37 0	1 ^{<i>a</i>} 58	1 3 ^d	
 <u>Specificity:</u> HSV-1: 100%, HSV-2: 98.3% 		-			

3 samples resulted as IND by Roche were negative by 3rd molecular comparator (Artus HSV)

Clinical impact

- Competent adults
 - Recurrent HSV-2 meningitis common, self-limited no specific therapy
- Compromised adults
 - HSV-1 severe encephalitis, require immediate treatment
- Children
 - Important cause of neonatal meningitis \rightarrow Assay off-label for blood, superficial (SEM screen)

VZV

Clinical

- Immunosuppressed \rightarrow reactivation
 - cerebellar ataxia, meningitis or encephalitis
 - Rash is present in only 42% of patients with confirmed VZV CNS disease

Serology

- CSF IgM
 - may be positive during asymptomatic reactivation or viremia episodes
 - Compare serum to CSF titer (?)

■ <u>NAAT</u>

- Fast → <24 h
- Sensitive $\rightarrow 10^2 \cdot 10^3$ copies/mL
- Quant vs. Qual
 - Qualitative typically associated with causality
 - Quant prognostic?

Diagnostic Microbiology and Infectious Disease 79 (2014) 174-177

EBV

■ <u>Virus</u>

- ~90% seropositivity
- Establishes latency in B-cells
 - Intermittent asymptomatic shedding in saliva

Clinical

- Immunocompetent
 - Acute IM \rightarrow adenopathy, malaise
 - CNS symptoms follow primary infection (pediatric/young adult)
 - Aseptic meningitis, encephalitis
- Immunosuppressed \rightarrow reactivation
 - 20-100% Burkitt, 40% Hodgkin, 10% DBC lymphomas
 - >95% of primary central nervous system lymphomas (PCNSLs)

EBV

Qualitative NAAT

- 75-100% sensitive
 - HIV-pos patients, histologically confirmed CNS lymphoma
- 66-88% specific
 - Positive result NOT correlated with increased risk of PCNSLs
 - 25-70% of EBV-positive specimens also pos for another likely pathogen
- 30-50% PPV

Quantitative NAAT

- Can a threshold increase specificity?
 - Threshold of 10^4 copies/mL \rightarrow 96% specific
 - Not-standardized.....lab-lab variability
- Comparison of serum vs. CSF VL?

NAAT not extremely helpful, should not be used as sole means of diagnosis for CNS infections

Polyomaviruses

■ <u>Virus</u>

– **JC**, BK, circa 1970; nine others circa 2000-2005

Epidemiology

- Seroprevalence 60-95%
 - JC/BK commonly shed in urine asymptomatic
 - Compromised severe focal organ disease

Illness (JC)

- Progressive multifocal leukoencephalopathy (PML)
 - Destructive viral replication
 - demyelination of white matter in the brain
 - confusion, ataxia, paresis, and death if untreated
 - Immunosuppressed
 - AIDS, HSCT, therapy for MS (natalizumab)

% of <u>healthy patients</u> with detectable BK/JC in Urine

JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2007, p. 193-198

FLAIR images

Credit: Biogen Idec

Polyomaviruses

JC

<u>Culture</u>

- Non-cultivable in routinely used cell lines

Serology

- Not useful for diagnosis, 60-90% seropositivity
- Potential to screen/stratify risk for those considering certain MS therapies

■ <u>NAAT</u>

- Fast → <24 h
- <u>Sensitivity is key!!</u>
 - 10¹-10² copies/mL (95% sensitive)
 - 10²-10 copies/mL (75% sensitive)
- Surrogate less invasive specimens...CSF vs. Blood, Urine?
 - Urine \rightarrow detected in 40-70%, not correlated with PML
 - Blood \rightarrow detected in 0.3-1%, none developed PML
- No FDA-cleared assays, reference labs LDTs

Diagnosic criteria for PML

Definite (etiological) diagnosis:

CSF-confirmed PML:

- a. Clinical and MRI findings consistent with PML and
- **b.** Evidence of JCV DNA in CSF

Tissue-confirmed PML:

a. Evidence of PML neuropathology in brain tissues (biopsy or autopsy) with JCV DNA or protein detected by in situ techniques.

Presumptive (clinical) diagnosis:

- a. Evidence of typical clinical and MRI findings and
- b. Brain biopsy and lumbar puncture either not performed or JCV DNA not detected in CSF.

Lancet Infect Dis. 2009 October ; 9(10): 625-636

The American Journal of Pathology, Vol. 180, No. 3, March 2012

FUNGAL MENINGITIS

Clinical impact of viral meningitis

Epidemiology

- Historically rare compared to viral/bacterial
 - Increasing prevalence with increasing immunosuppressed population
 - HIV/AIDS, hematologic malignancies, direct spinal surgeries/therapies
 - Pathogens
 - Cryptococcus >90% of fungal CNS infections
 - Dimorphic fungi Coccidioides, Blastomyces
 - Filamentous fungi "dematiaceous molds"

General risk factors

- Age
- *Immunecompromise* (*HIV* ~100-fold higher incidence of Crypto)
- Exposure
 - **Geographic location**
 - Medical procedures

Figure 1: global burden of HIV-related cryptococcal meningitis

Adapted from BJ Park et al., AIDS 2009;23:525-530

- Culture
- Antigen
- Serology
- NAAT/PCR

Best method depends on...

specific fungus, available tests, specimen

Culture

- Direct exam of specimen
 - Low yield, not routinely performed
- Plating
 - > 2mL \rightarrow centrifuge, plate entire pellet
 - Supernatant can be used for serologic tests
 - < 2mL \rightarrow plate entire volume to fungal culture media

■ Sterile source

- Critical to differentiate contamination from true infection
 - Do NOT streak inoculum \rightarrow consider growth only at inoculation site

CSF culture for Fungi is typically low yield, augment with second approach when available

Cryptococcus

- Direct exam of specimen
 - India ink smear \rightarrow Poor sensitivity
- Culture
 - Highly dependent on specimen volume/abx exposure

Cryptococcal Ag

- Latex agglutination capsular polysaccharide
 - Most sensitive method for diagnosis of Cryptococcal meningitis
 - CSF
 - Serum
 - Persists after resolution of symptoms
 - Positive in culture-negative/NAAT negative samples
 - Not a test of cure!
 - Can cross-react with other capsulated yeast \rightarrow Tricochsporon, Rhodotorula

Laboratory findings in CSF before and after antifungal therapy^a

Time of findings	Leukocyte (10 ⁶ /liter)	No. of positive fungal cultures (%)	Cryptococcal titer
Before therapy	$\begin{array}{c} 132.4 \pm 228.5 \\ 12.9 \pm 11.2 \end{array}$	20 (69.0)	$1,049.1 \pm 4.1$
After therapy		0 (0.0)	238.4 ± 4.4

JOURNAL OF CLINICAL MICROBIOLOGY, June 2005, p. 2989-2990

Cryptococcus

- Direct exam of specimen
 - India ink smear \rightarrow Poor sensitivity
- Culture
 - Highly dependent on specimen volume/abx exposure

Cryptococcal Ag

- Latex agglutination – capsular polysaccharide

JOURNAL OF CLINICAL MICROBIOLOGY, June 2005, p. 2989–2990

No. of patients	Host condition	No. positive by CSF Ag (%)	No. positive by CSF culture (%)	No. positive by India ink (%)	No. positive by serum Ag (%)
401 331 116 848	AIDS HIV negative, immunocompromised Immunocompetent Overall total	307/333 (92.2) 214/219 (97.7) 72/78 (92.3) 593/630 (94.1)	380/401 (94.7) 251/282 (89) 91/102 (89.2) 722/785 (92)	302/375 (80.5) 139/231 (60.2) 89/116 (76.7) 430/722 (59.6)	181/183 (98.9) 129/148 (87.2) 181/183 (98.9) 310/331 (93.6)

Efficiency of different techniques in the diagnosis of cryptococcal meningitis in different hosts^a

JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2005, p. 5828-5829

Laboratory findings in CSF before and after antifungal therapy^a

Time of findings	Leukocyte (10 ⁶ /liter)	No. of positive fungal cultures (%)	Cryptococcal titer
Before therapy	$\begin{array}{c} 132.4 \pm 228.5 \\ 12.9 \pm 11.2 \end{array}$	20 (69.0)	$1,049.1 \pm 4.1$
After therapy		0 (0.0)	238.4 ± 4.4

Dimorphs

- Coccidioides, Blastomyces, Histoplasma
 - CNS infection secondary to resp. infection
 - More common in compromised host
 - Histo 5-10% of disseminated infections
 - Blasto <5% of disseminated infections
 - Coccidioides 30-50% of disseminated infections
- Culture Poor sensitivity from CSF, long TAT, <u>HANDLE WITH CARE!</u>
- Serology Poor sensitivity in compromised host, high seroprevalence
- Antigen tests
 - Blasto/Histo
 - Urine antigen test >90% sensitive for disseminated disease
 - Cross-reactive (Blasto, Histo, Paracoccidioides)

HEAD OF DOMINGO EZCURRA FIRST CASE OF COCCIDIOIDOMYCOSIS

Dematiacious

- "Dark walled" fungi, contain melanin
 - Saprophytic \rightarrow soil/decaying plant material
 - Filamentous and yeast-like organisms
 - Cladophilophora bantiana
 - Inhalation \rightarrow neroinvasive/parenchymal growth
 - Exophiala \rightarrow yeastlike
 - Traumatic introduction \rightarrow injury, lines, ports
 - <u>Scedosporium</u>
 - Inhalation \rightarrow neurotropic
- Opportunistic skin/soft tissue and respiratory pathogens
 - <u>Tropism for CNS</u>
 - Affect young/healthy individuals

MOLECULAR DIAGNOSTICS

Syndromic panels

"Syndromic panel"

FilmArray ME (BioFire, 2015)

- Simultaneous detection of 14 targets → 200 uL CSF, 1 h TAT
 - Bacteria → E. coli K1, H. influenzae, L. monocytogenes, N. meningitidis, S. agalactiae, S. pneumoniae
 - Viruses \rightarrow CMV, VZV, HSV-1, HSV-2, HHV-6, Enterovirus, Human Paraechovirus
 - Fungi \rightarrow Cryptococcus neoformans/gattii

Performance

- Single center
 - 174 retrospective characterized CSF
 - Compared to LDTs (viral), culture (bacterial)
 - Discordant results tested with third LDT NAAT

					<u> </u>	-	· · · · ·	
	Conventional	FA ME panel	Baseline	Resolution	n result, no. ¹	,	Sensitivity, %	Specificity, %
Organism identification ^a	detection, no.	detection, no.	agreement, no.	FA+/R+	FA+/R-	FA-/R+	(95% CI) ^c	(95% CI) ^c
Bacteria								
H. influenza	4	5	4	1	0	0	100 (47.8-100)	100 (97.4-100)
S. pneumoniae	3	6	3	2	1	0	100 (47.8-100)	99.3 (96.1-100)
S. agalactiae	1	5	1	2	2	1	66.7 (9.4–99.2)	98.6 (95.0-99.8)
Escherichia coli	1	1	1	NA^d	NA	NA	100 (2.5-100)	100 (97.5-100)
Listeria monocytogenes	0	0	1	NA	NA	NA	NA	100 (97.5-100)
Neisseria meningitides	1	1	1	NA	NA	NA	100 (2.5-100)	100 (97.5-100)
Bacteria not in the FA ME panel ^e	7	0	7	NA	NA	NA	NA	NA

TABLE 1 Distribution of organisms identified by conventional methods and the FilmArray meningitis/encephalitis (FA ME) panel

Performance

- Single center
 - 174 retrospective characterized CSF
 - Compared to LDTs (viral), culture (bacterial)
 - Discordant results tested with third LDT NAAT

TABLE 1 Distribution of organisms identified by	conventional methods and the FilmArra	y meningitis/encephalitis ((FA ME) panel
			· · ·

	Conventional	FA ME panel detection, no.	Baseline agreement, no.	Resolution result, no. ^b			_ Sensitivity, %	Specificity, %
Organism identification ^a	detection, no.			FA+/R+	FA+/R-	FA-/R+	(95% CI) ^c	(95% CI) ^c
Viruses								
EV	37	37	36	1	0	1	97.4 (86.2-99.9)	100 (69.2-100)
HSV-1	12	13	11	0	2	1	92.9 (66.1-99.8)	98.0 (89.1-99.9)
HSV-2	29	29	29	NA	NA	NA	100 (88.1-100)	100 (82.4–100)
HHV-6	13	18	12	6	0	1	94.7 (74.0-99.9)	100 (92.6-100)
VZV	32	32	32	NA	NA	NA	100 (89.1-100)	100 (79.4–100)
CMV	7	4	4	0	0	3	57.1 (18.4-90.1)	100 (91.4–100)
EBV	13	25	11	5	9	1	94.1 (71.3–99.9)	84.2 (72.1–92.5)
PV	0	1	0	1	0	0	100 (2.5–100)	100 (92.5–100)
Yeast								
C. neoformans/gattii	14	9	8	1	0	0 ^f	64.3 (35.1–87.2)	NA
Total	174	186	161	19	14	8	92.8 (88.2–96.0)	92.8 (88.2–96.0)

- Potential pitfalls
 - Cryptococcus
 - 64% sensitive compared with CrAG
 - All discordants were negative by alternative NAAT and culture
 - CrAG more sensitive than NAAT? AG persist?

- Potential pitfalls
 - Cryptococcus
 - 64% sensitive compared with CrAG
 - All discordants were negative by alternative NAAT and culture
 - CrAG more sensitive than NAAT? AG persist at low level!!!

- Potential pitfalls
 - Cryptococcus
 - 64% sensitive compared with CrAG
 - All discordants were negative by alternative NAAT and culture
 - CrAG more sensitive than NAAT? AG persist at low level!!!
 - EBV
 - 84% specific, EBV in 14/20 (70%) of "mixed infections"
 - Lymphocytic infiltrates \rightarrow latent virus?
 - CMV? HHV-6? \rightarrow clinical significance?

- Potential pitfalls
 - Cryptococcus
 - 64% sensitive compared with CrAG
 - All discordants were negative by alternative NAAT and culture
 - CrAG more sensitive than NAAT? AG persist at low level!!!
 - EBV
 - 84% specific, EBV in 14/20 (70%) of "mixed infections"
 - Lymphocytic infiltrates \rightarrow latent virus?
 - CMV? HHV-6? \rightarrow clinical significance?
 - S. pneumoniae
 - 99% (1544/1556) specific but....
 - Only 5/12 FP confirmed by alternative NAAT
 - 9 TP, 3 FP → PPV 75%
 - Data from package insert

With low prevalence population, specificity is key!!!!!!!

- Utilization
 - Pediatrics
- Adult outpatient, acute onset
 Rapid method for HSV, but more \$\$\$ than Simplexa HSV
 - Consider clinical picture (severe symptoms, elderly), do results fit?

Rapid, effective method to determine cause of symptoms

- S. pneumoniae? Other herpesviruses?

Enterovirus/HPeV vs. HSV vs. bacterial

- Compromised patient
 - Rapid, but is it comprehensive?
 - 14/110 (13%) positive bacterial cultures were on-panel targets
 - Analytical vs. clinical specificity for herpesviruses

- Inpatient with hardware
 - No! Common bugs not on panel (CoNS, *P. aeruginosa, Enterococcus, Acinetobacter*)

ID	# cultures	% cultures
S. epidermidis	39	35.5%
CoNS	5	4.5%
Corynebacterium	1	0.9%
P. acnes	4	3.6%
Bacillus spp.	2	1.8%
Micrococcus	1	0.9%
S. pneumoniae	4	3.6%
N. meningitidis*	3	2.7%
E. coli	4	3.6%
S. marcessens	3	2.7%
Enterococcus	6	5.5%
P. aeruginosa	7	6.4%
Enterobacter spp.	4	3.6%
S. agalactiae	2	1.8%
S. pyogenes	1	0.9%
Acinetobacter	3	2.7%
Viridans gr. Strep.	5	4.5%
S. aureus	4	3.6%
P. mirabilis	1	0.9%
Mixed pathogens	5	4.5%
Candida spp.	2	1.8%
C. neoformans	4	3.6%
Total	110	

Conclusion

Meningitis remains a common, potentially serious condition

- Critical to get result to clinician as fast as possible
 - Major impact on care and management (antibiotics, antivirals? supportive care?)
- No single approach is sufficient to detect all causes
- In choosing orderable test consider
 - Symptoms
 - Patient population
 - Current and previous infections/anatomic sites
 - Geographic locale
- Molecular tests are typically the most sensitive method for diagnosis however...
 - Few FDA-cleared options
 - "Only find what you are looking for" potential for false sense of security
 - Must always be accompanied by culture

THE END

Are we still awake?