

Wisconsin State Laboratory of Hygiene UNIVERSITY OF WISCONSIN-MADISON

Next Generation Sequencing for Outbreak Detection

Dave Warshauer, PhD, D(ABMM) Deputy Director, Communicable Diseases Wisconsin State Laboratory of Hygiene david.warshauer@slh.wisc.edu

PulseNet and PFGE

Why Evolution to WGS

For PulseNet Labs

- Consolidation of multiple workflows
 - ID
 - subtyping
 - Serotyping
 - antibiotic resistance
 - virulence factors
- Fast---Decrease TAT to 2-4 days
- Cheaper

Case: Shiga Toxin-Producing *E. coli* Cost Savings by Moving from Traditional Isolate Characterization to WGS

(Materials only)

Characterization of a Shiga toxin-producing <i>E.</i> coli isolate	Current testing costs	ID + characte MiSeq	rization by WGS NextSeq
Identification	\$60		
Serotyping	\$159		
PCR Virulence Profile – 4 targets	\$10		
PFGE	\$30		
MLVA	\$15		
AST	\$30		
WGS		\$123	\$60
Total	\$304	\$123	\$60
Cost savings %		59 %	80%

Annual cost savings based on # uploads to PulseNet in 2014: \$ (2239+3614) * (274-123)= <u>\$ 884,000</u>

*Slide courtesy of Rebecca Lindsey/Escherichia Reference Lab/ EDLB

Key Characteristics of the Main WGS Platforms

Platform	Read length (bp)	lsolates per run (max)	Run time	Instrument cost	Cost/ Mb	Error rate (%)
Illumina HiSeq 2500	125	600-1000	5-11 d	\$740K	\$0.05	0.1
Illumina MiSeq	150,250, 300	12-16	26 h, 36 h 65 h	\$99K	\$1.37	0.1
Illumina NextSeq	75,150	96	29 h	\$250K	0.03- 0.07	0.1
IonTorrent PGM (314, 316,318)	200,400	1-10	2-8h	\$75K	\$0.93 - \$7.5	1
Ion Proton	100-200	96	2-4 h	\$245K	\$0.02	1
PacBio RSII	10-40kb	8/smrt cell	0.5-2 h	\$750K	\$180.0 0	16

Transforming Public Health Microbiology – PulseNet and Beyond

Why WGS for surveillance?

- Improved outbreak detection and investigation
 - More outbreaks detected earlier with fewer cases
 - More focused investigations
 - More information available in real-time (e.g. virulence, resistance)
 - Better alignment of cases and foods/environment
- Improved trend and attribution analyses

Whole Genome MLST (wgMLST)

Gene – Gene Approach

- Multi-locus sequence typing (MLST) and/or identification of genes for reference characterization
- Assess variations ('alleles') within each gene:
 - SNP(s), indels, rearrangements

'Locus' (gene)	Strain 1	Strain 2	Strain3	Strain 4
A	ACTAGAGGGAA	ACTAGAGGCAA	ACT-GAGGGTAA	ACGGGAGATAA
	allele 1	allele 2	allele 3	allele 4
В	TAGCCAGGGTC	TAGCAAGGGTC	TAGCGGTC	TAGGCAGGGTC
	allele 1	allele 2	allele 3	allele 1
C, D, E, etc	alleles 5,2,8	alleles 1,4,7	alleles 1,3,9	alleles 6,2,9

 The gene- gene approach should give you all the information you need from a reference laboratory Plain
 language
 reporting of
 WGS
 reference
 data from
 wgMLST
 database

Public Health WGS Workflow

Analysis: Easy and Rapid

	1	Overview		-						
		File Jobs View V								
Submit jobs		D IL Aljobs			× -	0.0	*			
Submit jobs				ana 🖷 📗	<u> </u>	9 9				
AL		Overview of submitte			_	_			_	
Algorithms		Entry	Submitted time (UTC)	Status	Meg	Progress	Job type	JobiD	User	Description
Raw data statistics	5	WGLN00002476	2014-12-05 17:06:15	Running	[13.13	0%	De novo assembly	13eff402-40fe-4e4a-ad32-de40	_DefaultUser_	Doing a denovo assembly for WGL
	9	WGLN00001787	2014-12-05 17:08:15	Running	[10.96	0%	De neve assembly	95e799bb-85d5-4e91-bcb4-5d9	_DefaultUser_	Doing a denovo assembly for WGL
Assembly-free calls Settings		4 WGLN00002475	2014-12-05 17:06:15	Running	[11.00	0%	De neve assembly	4e105e74-920e-43b7-9333-d96	_DefaultUser_	Doing a denovo assembly for WGL
Eroscholy recents Statigate	- 1	5 WGLN00001789	2014-12-05 17:08:15	Running	Executi	0%	De neve assembly	a9600add-9d18-467a-9abc-ecd	_DefaultUser_	Doing a denovo assembly for WGL
	3		2014-12-05 17:06:14	Running	[10.58		De neve assembly	d4baf2a3-6d15-4756-9e64-faba	_DefaultUser_	Doing a denovo assembly for WGL
✓ De novo assembly Settings	4	WGLN00002478	2014-12-05 17:08:14	Running	Opening	0%	Assembly-free calls	93a2f18a-25b8-458d-979f-f9d3	_DefaultUser_	Finding aleles for WGLM00002478
	C 7	WGLN00002475	2014-12-05 17:06:14	Running	Opening		Assembly-free calls	088816e3-03d5-41cf-910d-25c	_DefaultUser_	Finding alleles for WGLMD0002475
Assembly-based calls Settings	s ع	WGLN00001789	2014-12-05 17:08:14	Running	Opening	0%	Assembly-free calls	20b72b98-ee13-4db1-8187-038	_DefaultUser_	Finding alleles for WGLM00001789
Assembly-based calls Settings	2	WGLN00001787	2014-12-05 17:06:13	Running	Opening	0%	Assembly-free calls	54d57f7d-cedc-4e93-b6b6-a0b	_DefaultUser_	Finding alleles for WGLM00001787
		WGLN00001787	2014-12-05 17:06:13	Finished	Done	100%	Rew data statistics	3983d489-5c75-4137-8129-03e	_DefaultUser_	Calculating sequence read acts statis
Jobs	1	0 WGLN00001786	2014-12-05 17:06:13	Running	Opening		Assembly-free calls	42dcee2e-300c-42be-84a2-3b3	_DefaultUser_	Finding alleles for WGLM00001785
Number of interter submitting Franking 20	1	1 WGLN00001789	2014-12-05 17:06:13	Finished	Done	100%	Rew data statistics	918cbc81-c28f-42fa-ba9c-3533	_DefaultUser_	Calculating sequence read acts statis
Number of jobs to submit for 5 entries: 20		2 WGLN00002475	2014-12-05 17:06:13	Finished	Done	100%	Raw data statistics	6abda1be-ea46-4c57-5cc1-04a	_DefaultUser_	Calculating sequence read sets statis
	1	3 WGLN00002478	2014-12-05 17:06:13	Finished	Done	100%	Rew data statistics	48ee243f-320d-4052-889e-d45c	_DefaultUser_	Calculating acquence read acts statis
Re-submit already processed data	1	WGLN00001785	2014-12-05 17:06:12	Finished	Done	100%	Raw data statistics	5d302371-7ca4-4661-aa50-917	_DefaultUser_	Calculating sequence read sets statis
Open jobs overview window	9									
a openjous overview window										
OK Cancel										
	C									
	N.									
		4								+

No need for on-site bioinformatician or large computer resources; labs in network can submit sequence data for analysis to CDC computing resources

Projected wgMLST Database Validation and Deployment Timeline

PulseNet Sequencing Priorities with AMD Funds – Clinical Isolates

Listeria monocytogenes:

All isolates received by supported laboratories

Non-O157 STEC

- All sporadic isolates
- No more than 3 from the same outbreak. If multiple PFGE patterns within an outbreak, include one representative of each pattern

O157 STEC

- Only if requested by CDC
 - One representative from each outbreak or if MLVA data is inconclusive

PulseNet Sequencing Priorities with AMD Funds – Clinical Isolates

Campylobacter

All isolates that are PFGE-tested and uploaded by your lab

Salmonella

- Isolates requested by CDC
- Prioritization based on epi data

Each laboratory expected to sequence about 150-300 isolates during the first year

Genome Trakr Network

- FDA led network
 - Public health labs
 - University and hospital labs
 - Federal labs
- Fooodborne pathogens
 - Foodborne outbreaks
 - Contaminated food products
 - Environmental sources
- Data in an open-access genomic reference database called Genome Trakr at the NCBI

Purpose of Genome Trakr

- Find contamination sources of outbreaks
- Better understand the environmental conditions associated with the contamination of agricultural products
- Help develop new rapid methods and culture independent tests
- Monitor emerging pathogens
- Determine persistence of pathogens in the environment

Basic Data Flow for Global WGS Public Access Databases

DATA ACQUISITION

Sequence and upload genomic and geographic data

Total Number of Sequences in the GenomeTrakr Database

WGS in a Foodborne Outbreak

- 2010 nationwide salmonellosis outbreak
 - Over 1,900 illnesses with S. Enteritidis associated with eggs
 - Shared a common PFGE pattern
 - Pattern 4 (JEGX01.004)
 - 40% of SE share this pattern
 - Could not determine if the increase in illnesses was due to a single outbreak or multiple outbreaks

Salmonella Enteritidis Outbreak

- Traceback investigation pointed to two egg producers in the Midwest
 - Environmental specimens collected
 - Positive for SE with same PFGE pattern from both producers
 - Indistinguishable from clinical isolates
 - Because of common pattern could not know for sure if they were the same strain

WGS Comes to Save the Day

- Genomic sequences for the SE found at the 2 egg producers very closely related, but distinguishable
- Egg producer sequences also closely related to the sequences from the clinical samples
 - So closely that they were both deemed to match
 - Because there was a slight difference in the genomes, investigators could further delineate the specific egg processor to which an individual illness was linked

Outbreak 2 Cereal Killer

Cereal Killer

- 2008 outbreak of Salmonella Agona in 33 people linked to Midwest dry cereal manufacturer
- 3 different PFGE patterns
 - 3 different sources of contamination?
- WGS revealed isolates had a recently common lineage and were in fact the same strain

Cereal Killer

- CDC archived isolate of SA collected in 1998 from an outbreak linked to the same cereal manufacturer
 - WGS showed it virtually identical to the strain causing the 2008 outbreak
- How?
 - Would expect greater genetic diversity over 10 years

The Theory

- 1998 outbreak linked to contaminated water
- Water also used in 1998 renovation in the mortar
- SA lay dormant in the mortar
- 2008 another renovation
 - Mortar was disrupted and SA released into the environment
 - Multiplied and contaminated the plant and the cereal product

Other WGS at WSLH

- Influenza A and B directly from specimens
 - Partnership with CDC for surveillance of genetic changes and selection of vaccine strains
- Norovirus
- Vaccine Preventable Diseases
 - Measles
 - Mumps
 - Rubella

Acknowledgements

- HEATHER CARLETON PH.D., M.P.H., CDC
- THE ST&FF OF WSLH

Thank You

Case: Campylobacter Cost Savings by Moving from Traditional Isolate Characterization to WGS

(Materials only)

Characterization of a Campylobacter jejuni isolate	Current testing costs	ID + characte MiSeq	rization by WGS NextSeq
Identification	\$74.20		
PFGE	\$30.00		
MLST	\$71.80		
AST	\$20.00		
WGS		\$73	\$54
Total	\$196.00	\$73	\$54
Cost savings %		63%	72%

Annual cost savings based on # uploads to PulseNet in 2014: \$ 3346 * (104.20-73)= *Slide courtesy of Campylobacter Reference Lab/ EDLB

Comparison of Different Benchtop Platforms

Factors	Illumina MiSeq	Ion Torrent PGM
Time from DNA to Sequence*	30 -32 hours	30 hours
Total hands on time*	3-4 hours	8 hours
Number of isolates per run	12-16	1-12
Cost per isolate**	~ \$85-125 (12-16 isolates/ 300 cycle cartridge)	~\$306-325 (4-5 isolates/316 chip)
Data Quality	Q30	Q20

*Using in-house protocols

**Our costs for our most common usages of this technology; cost will go up for MiSeq if you have less isolates to multiplex; costs will change for PGM based on chip used and chemistry

PulseNet AMD Funds to States in 2014

PulseNet FY 2014 support through AMD funding for the states

- ~ \$750,000 through ELC for 6 states (CT, MI, MN, OH, TN, WI)
 - Instrumentation, personnel, reagents
 - Mainly FoodCore states
- \$100,000 as direct Illumina reagent support for 4 states
 Mainly GenomeTrakr labs (MD, NY, VA, WA)
- 2 bench training laboratory workshops: Aug 4-7, Sept 22-25
 - 10 laboratorians trained in MiSeq sequencing and limited data analysis

Library Preparation: Multiplexing

Illumina MiSeq

- 300 cycle cartridge (60 MB)
 - 16 Listeria
 - 12 Salmonella/Ecoli
 - 30 Campylobacter
- 500 cycle cartridge (80 MB)
 - 20-22 Listeria
 - 16 Salmonella/Ecoli
 - 45-50 Campylobacter

Ion Torrent PGM

- 314 chip
 - 2 Listeria
 - 1 Salmonella/Ecoli
- 316 chip
 - 5 Listeria
 - 3 Salmonella/Ecoli
- 318 chip
 - 10 Listeria
 - 6 Salmonella/Ecoli

Results of Benchtop NGS Comparison

Factor	MiSeq	PGM		
Coverage	128 (58x-266x)	47x (21x-73x)		
Contigs per assembly	22 (assembled using CLC)	28 (assembled using MIRA)		
N50	391,927	306,604		
hqSNP calls	0-2 differences			
wgMLST loci detected	Average of 16 more loci identified by MiSeq			
wgMLST allele call differences	0-2 discrepancies			

* Preliminary analysis suggests data is compatible to use in surveillance and outbreak detection