

ACL – Molecular Microbiology Michael Costello, Ph.D. ACL Laboratories

Confidential- Internal Use Only

www.acllaboratories.com

Advocate Health Care

Largest Health System in IL

- 12 Hospitals (~3,360 Beds)
 - > 1 Integrated Children's Network
 - > 5 Level I Trauma
 - > 2 Level II Trauma
 - 4 Teaching
- Advocate Medical Group
- Advocate Physician Partners
- Dreyer Medical Group
- Advocate at Home (Home Care/Hospice)
- 34,000 Employees
- \$4.6 Billion Revenue

Largest Health System in WI

- 15 Hospitals (~3,000 Beds)
 - > 1 Psychiatric

.

- 5 Level II Trauma
- 2 Teaching
- Aurora Medical Group
- Aurora Advanced Medical Group
- Aurora U.W. Medical Group
- Lakeshore Medical Group
- Aurora VNA (Home Care/Hospice)
- 30,000 Employees
- \$4.3 Billion Revenue

ACL Laboratories Profile

- One of the largest hospital system laboratories in the US
- \$300M Annual Operating Expense Budget
- Provides services to 27 Hospitals; 2 Central Laboratories;110+ Clinics & Patient Service Centers (PSC)
- 2,700 Associates/Caregivers
- 90 Pathologists; Midwest Diagnostic Pathology (IL) and Great Lakes Pathologists (WI)
- 24M laboratory tests performed annually (50k a day)
- 5200+ Clients outside of our systems
- Couriers: 80+ vehicles, > 3.6 million miles annually
- Client Services handles ~1000 in-bound calls day

"Unique Molecular Test Challenges"

Size

- $_{\circ}$ The Good
 - Spread cost over 27+ hospitals
- o The Bad
 - 27+ hospitals with unique testing requirements
- $_{\rm O}$ The Ugly
 - Getting two large healthcare systems (Aurora and Advocate) to agree on anything
 - $_{\odot}$ What testing is the most significant?
 - When
 - Where
 - Keeping everyone on the "same page"
 - o Which page?

"Unique Challenges"

Different patient populations

o Urban – Milwaukee Vs. Chicago

- Widest spectrum of pathogens
- Increased antibiotic resistance

MRSA, VRE, ESBLs (*shv*, *tem* Vs. CTX-M), CRE

 \circ Suburban

Widest variation in pathogens and antibiotic resistance

 \circ Rural

 Smallest variation in pathogens and antibiotic resistance

Changing Pathogen Identifications in Microbiology

TABLE 1 Viruses Detected by Conventional Virology (2004) vs. Molecular Methods (2013)

	% POSITIVE SPECIMENS*					
	2004	2013 [†]	Comments			
Viruses						
Herpes simplex	22	21.4	2013 – HSV subtyped (HSV-1=11%; HSV-2 = 10.4%)			
Cytomegalovirus	4	14	2004 – Diagnosis; 2013 - diagnosis and monitoring			
Epstein Baar virus	N/A	11.3				
Enterovirus	10	2	2003 - throat, rectal, CSF; 2013- CSF only, yearly panel			
Varicella zoster	<1	14.3	2004 – vesicles only; 2013 vesicles, CSF, plasma and urine			
Respiratory Viruses						
Adenovirus	8	1.1	2013 Respiratory Viral Panel available throughout the year			
Influenza A	9	8.4	2013 Respiratory Viral Panel available throughout the year			
Influenza 2009 H1N1	N/A	3.4	2013 Respiratory Viral Panel available throughout the year			
Influenza B	4	2.9	2013 Respiratory Viral Panel available throughout the year			
Respiratory syncytial virus	31	7.4	2004 – seasonal; 2013 - RVP available throughout the year			
Human Matapneumovirus	N/A	3.4	2013 Respiratory Viral Panel available throughout the year			
Parainfluenza 1–3	10	2.9	2004 – seasonal; 2013 - RVP available throughout the year			
Parainfluenza 4	N/A	1.2	2013 Respiratory Viral Panel available throughout the year			
Coronavirus (4 serotypes)	N/A	2.0	2013 Respiratory Viral Panel available throughout the year			
Enterovirus/Rhinovirus	N/A	17.5	2013 Respiratory samples only. Available through the year			

Personal data, M. Costello and L. Mazur, Multiple hospitals, Chicago area and southeast Wisconsin.

Changing Workflow in Microbiology

Traditional workflow Vs. Syndromic Panels

oTraditional workflow

- Sequential traditional ordering of laboratory tests
 - oTakes time
 - \circ Less sensitive
 - Can be more expensive than molecular syndromic panels

Syndromic panels

 $_{\odot}\text{To}$ be performed as "stat" tests

- Meningitis-Encephalitis (ME) Panel
- Blood Culture Identification Panels
 - Molecular panel vs. MALDI-TOF
 - Ensure that someone acts on results
- $_{\odot}\text{2-24}$ hour turnaround time
 - Respiratory Panel
 - Gastrointestinal Panel

1-24 Hour Turnaround Time

The FilmArray Pouch

www.acllaboratories.com

All PCR reactions are 3%

CNS Workup

Confidential-Internal Use Only

Arboviruses include West Nile Virus,

BGMK=buffalo green monkey cells; HDF=human diploid fibroblasts; PMK=primary monkey kidney, RD= Rhabdomyosarcoma cells

Traditional Culture Vs. Syndromic Panels

- Traditional Culture Sequential/separate diagnostic tests
 - Culture/serology
 - Different tests for bacterial, viral and fungal pathogens

- Meningitis-Encephalitis (ME) Panel

 $_{\odot}$ One test for viruses, bacteria and fungus

 $_{\circ}$ How will this panel be used?

- Triaging ED patients 1 hour TAT
 - HSV encephalitis admit and treat aggressively
 - Enteroviral meningitis Send home
 - Rapid diagnosis
 - Antibiotic therapy
 - Viral vs. bacterial

Meningitis/Encephalitis Panel

FilmArray[™] Meningitis/Encephalitis Panel

1 Test. 16 Targets. All in about an hour.

Currently in Development

Bacteria

Escherichia coli K1 Haemophilus influenzae Listeria monocytogenes Neisseria meningitidis Streptococcus agalactiae Streptococcus pneumoniae

Viruses

Cytomegalovirus (CMV) Enterovirus Epstein-Barr virus (EBV) Herpes simplex virus 1 (HSV-1) Herpes simplex virus 2 (HSV-2) Human herpesvirus 6 (HHV-6) Human parechovirus Varicella zoster virus (VZV)

Yeast

Cryptococcus gattii Cryptococcus neoformans

Respiratory Viral Panel

ACL RESP PANEL - Nov 01 2015 - Feb 20 2016															
infA- Un Sub	InfA-H1	InfA-H3	2009 H1N1	Inf B	RSV	All Para	EV / Rhino	Metapn eumo	Adeno	All Corona	Total Pos	POS PCR	Total	ACL %FLU	US %FLU
46		3	6	2	46	1	33	24	6	9	176	57	451	12.6	n/a
35	0	0	5	0	61	2	24	22	10	16	175	40	454	8.8	12.0
25	0	2	1	0	62	4	36	15	9	13	167	28	435	6.4	9.1
17	0	0	1	0	41	1	27	15	6	17	125	18	371	4.9	6.8
4	0	0	1	0	35	3	31	10	13	8	105	5	352	1.4	5.0
3	0	0	0	0	31	3	39	11	13	22	122	3	369	0.8	4.2
3	0	0	1	0	43	9	51	12	16	9	144	4	396	1.0	3.0
1	0	0	0	1	32	6	48	12	6	9	115	2	300	0.7	1.8
3	0	0	0	0	22	7	44	2	2	6	86	3	270	1.1	2.5
2	0	0	0	1	26	7	54	9	8	4	111	3	316	0.9	2.9
0	0	0	1	0	8	14	36	5	8	1	73	1	287	0.3	1.7
0	0	0	1	0	9	6	44	3	3	2	68	1	244	0.4	1.6
2	0	0	0	0	2	9	45	0	7	1	66	2	230	0.9	1.5
1	0	1	0	0	4	19	49	1	9	0	84	2	363	0.6	1.1
0	0	0	2	0	4	19	57	1	11	0	94	2	443	0.5	1.6
0	0	0	2	0	0	12	50	3	6	1	73	2	359	0.6	1.2

Respiratory Panel

How will this panel be used?
Expense Vs. Utility?
Influenza season?
Reflex test?

- $_{\circ}$ In-patients Vs. out-patients
 - Syndromic panels for in-patients?
- Admit or not to admit
- $_{\odot}$ Bacterial Vs. viral

Cytopathic Effect (CPE) in tube culture

Hep-2, uninfected

RSV/Hep-2

Adenovirus/Hep-2

Shell vial monolayers stained with FITC-conjugated monoclonal antibodies

R-Mix shell vial Influenza in mink lung

R-Mix shell vial Parainfluenza in mink lung

R-Mix shell vial RSV in A549

R-Mix shell vial Adenovirus in A549

Patient respiratory cells stained with FITC-conjugated monoclonal antibodies

Influenza A NP aspirate

Parainfluenza NP aspirate

RSV NP aspirate

Adenovirus NP aspirate

Figure 5. Viral growth in cell culture line and viral detection in patient samples.

Respiratory Panel

The FilmArray Respiratory Panel tests for a comprehensive panel of 20 respiratory viruses and bacteria. The FilmArray instrument integrates sample preparation, amplification, detection and analysis into one simple system that requires 2 minutes of hands-on time and has a total run time of about 1 hour.

- Simple: 2 minutes of hands-on time
- Easy: No precise measuring or pipetting required
- Fast: Turnaround time of about 1 hour
- Comprehensive: 20 target respiratory panel

Download Product Sheet

Viral Targets

Adenovirus	Influenza A/H1
Coronavirus HKU1	Influenza A/H3
Coronavirus NL63	Influenza A/H1-2009
Coronavirus 229E	Influenza B
Coronavirus OC43	Parainfluenza Virus 1
Human Metapneumovirus	Parainfluenza Virus 2
Human	Parainfluenza Virus 3
Rhinovirus/Enterovirus	Parainfluenza Virus 4
Influenza A	Respiratory Syncytial Virus

FDA-Cleared

Bacterial Targets

Bordetella pertussis Chlamydophila pneumoniae Mycoplasma pneumoniae

MOLECULAR PATHOLOGY UPDATE

Gastrointestinal Panel

K		6	2	20	T
	-		ł	\sim	
	1			1	

Luminex Assay

GPPNL Gastrointestinal Pathogen Panel

Reported as: GASTRO PATHOGEN PNL

Also known as: Gastrointestinal Pathogen Panel by PCR, Viruses: Adenovirus 40/41, Rotavirus A, Norovirus (GI/GII includes Sydney 2012), Bacteria and bacterial toxins: Escherichia coli (E. coli) 0157, Enterotoxigenic E. coli (ETEC) LT/ST, Salmonella spp, Shigella spp (S. boydii, S. sonnei, S. flexneri and S. dysenteriae), Campylobacter spp (C. jejuni, C. coli and C. lari only), Shiga-like Toxin producing E. coli (STEC) stx 1/stx 2, Vibrio cholerae, , Parasites: Giardia (G. lamblia only), Entamoeba histolytica, Cryptosporidium spp. (C. parvum and C. hominis only).

Specimen Requirements

Patient Preparation: Stool specimens must not be collected after administration of barium, bismuth or oil.

Collect: Stool in sterile container or in C&S (Cary-Blair) media

Transport: Do not freeze.

5.0 mL (min: 1.0 mL) refrigerated

Unacceptable Conditions: Frozen.

Leaking container. Non-sterile container. Specimen not received in appropriate transport media. Rectal swabs.

Stability: Ambient: 8 Hours / Refrigerated: 2 Days / Frozen: 2 Weeks (to be Frozen at ACL core lab only - for long term storage)

Ordering Instructions

Order Remarks: This assay is FDA approved for use with unpreserved raw stool specimens and Carry-Blair media. Other type of collection media are not validated and will be rejected.

Clinical Significance

Click here for more information

Lab Notes

Frozen unpreserved stool will limit any additional culture and parasitology type testing due to stability. Stool specimens must not be collected after administration of barium, bismuth or oil. Throat swabs, vomitus and other stool transport devices will be rejected. Not suitable for test of cure on previously positive patient.

Test Performance

Performed: Weekdays

Reporting Time: Final within 3 Days

Performing Labs: ACL IL Central Laboratory - Rosemont, EMR/Interfaced Flagged "Client" Orderable test

CPT Codes

87507

Blood Culture Identification Panel

Blood Culture Identification Panel

- Syndromic Panel Vs. MALDI-TOF
- Remote sites Vs. Non Remote sites

 $_{\odot}$ Considering molecular rapid ID methods for remote sites

In Summary

Outstanding Issues

Validation/verification of syndromic panel assays

- $_{\rm O}$ Need to validate all pathogens detected
- Controls
 - ∘ IQCP?
 - $_{\circ}$ How often to run controls?
 - o Single positive or multiplexed controls?
 - o Prepare or purchase?
- How/what to charge for syndromic panels?

Limit ordering of syndromic panels?

 $_{\odot}$ Influenza test Vs. whole syndromic panel

- Limit testing by season?
- Limit ME Panel to patients with abnormal protein, glucose and WBC counts?

Outstanding Issues

Training

- Training must be extensive and continuous if syndromic molecular panels are to be performed by non-Molecular trained technologists
- Tests are more complicated than they appear!
- Test setup <u>must include</u> proper precautions against contamination (including barrier and process precautions)
 - HSV-1 contamination example on Biofire
 - $_{\odot}$ Two HSV-1 consecutive positive CSF samples
 - Positive HSV-1 not consistent with patient symptoms and other labs.
 - HSV-1 would have not been ordered if not in the panel

Outstanding Issues

Think small!

- Amplicon contamination
 - Multiple glove changes
 - One sample at a time
 - Thoroughly clean after each sample with chemicals that denature nucleic acids
 - No multi-tasking when performing amplified molecular assays.
 - How do you know if you have amplicon contamination?
 - Keep track of your positive samples
 - Look for clusters
 - Ask the physicians if your results makes sense

Summary - What Has Worked for Us

Taking the time to assess the needs of our patients

- Infectious Disease physicians
- o Pharmacists
- ED physicians and others
 - Admit Vs. not to admit
 - $_{\circ}$ ME panel
 - Children Enterovirus positive send home
 - Adults HSV-1 positive Aggressive treatment
 - Respiratory Panel
 - Influenza Vs. others
 - Antivirals Vs. antibiotics
 - Immunosuppressed Vs. not immunosuppressed

Summary - What Has Worked for Us

- Blood Culture Panels
 - Antibiotic stewardship
 - Right antibiotic, at the right time, for the right duration
 - Antibiotic De-escalation
 - Ensure that someone is listening, especially for stat syndromic panels
 - Close the "loop", labs do not function in a vacuum
- Tests must be clinically significant and cost effective
 - Most benefits will be "downstream"