

Next-Generation Sequencing 101

Nicholas Florek, PhD, MPH

Allen Bateman, PhD, MPH, D(ABMM)

Autoradiograph - MRC Laboratory of Molecular Biology

Microbial Genomes

most bacteria have a singular circular chromosome ranging from 160,000 to 12.2 million base pairs

many can also carry plasmids

bacteria reproduce asexually through binary fission, each daughter cell is clonal to the parent

DNA is transferred vertically

mutations occur during replication

DNA can also be transferred horizontally

- uptake from environment transformation
- transferred between cell contact conjugation
- transferred through phage transduction

Sequencing: insight into evolution

provides greater level of detail on the organism

- phenotypic traits can vary
 - difficulty in identification
 - difficulty in resistance detection
 - limited information about mechanism
- insight into relationships with other isolates
- lots of information can be determined from sequence
 - antimicrobial resistance (AR) genes
 - virulence factors
 - serotype ...

Sanger method of sequencing

1977 – Frederick Sanger

dideoxy chain-termination method

https://www.gatc-biotech.com/en/expertise/sanger-sequencing.html

Limitations of Sanger sequencing

limited to ~800bp for each run

cost per bp is high

large amount of time for each base

highest possible accuracy

https://www.nature.com/news/human-genome-project-twenty-five-years-of-big-biology-1.18436

Cost per Raw Megabase of DNA Sequence

https://www.illumina.com

Illumina sequencing

https://www.illumina.com

Next generation sequencing

- short read
 - 100bp to 600 bp reads
 - 1000s to millions of reads
 - 99.9999% accuracy
 - low cost per sample
 - unable to resolve larger

structures

Next generation sequencing

- short read
 - 100bp to 600 bp reads
 - 1000s to millions of reads
 - 99.9999% accuracy
 - low cost per sample
 - unable to resolve larger

structures

- long read
 - 6kb to 2.3mb reads
 - thousands of reads
 - 80% to 90% accuracy
 - high cost per sample
 - can resolve larger

structures

https://www.pacb.com/

Hill et al. Biocehmical Society Transactions 2017

https://nanoporetech.com

Why read length matters

short read

Why read length matters

Sequencing at the WSLH

short read – illumina

divided into 2 components

- wet lab
- computational

sample processing and sequencing – 5 days

computational analysis – hours to weeks

Single nucleotide polymorphisms (SNPs)

ReferenceAATGCACCGATCGTCGATCGCTGCTAGCCSample 1AATGCACCGATCGTCGATTGCTGCTAGCCSample 2AATGCACCGATCGTCGATCGCTGCTAGCCSample 3AATGCACCGATCGTCGATCGCTGCTAGCCSample 4AATGCACCGATCGTCGATCGCTGCTAGCCSample 5AATGCACCGATCGTCGATCGCTGCTAGCC

differences in SNPs allow for comparisons between organisms

Phylogenetic comparison of SNPs

Methods of sequencing

Shotgun whole genome

Methods of sequencing

Amplicon

Methods of sequencing

Metagenomic

Applications of next-generation sequencing (clinical and public health microbiology)

<u>Clinical microbiology</u>

- 16S deep sequencing for mixed infections
- Metagenomic CSF sequencing
- Viral resistance testing (HIV)
- Hospital outbreaks

Public health microbiology

- Foodborne disease outbreak detection
- Influenza surveillance

- 16S rRNA, informative region for evolutionary relatedness of bacteria
- Highly variable region of DNA, flanked on either side by highly conserved regions (for primer binding)

https://www.nature.com/articles/nrmicro3330

Clarridge JE, Clin Micro Rev '04. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases

- 16S rRNA, informative region for evolutionary relatedness of bacteria
- Highly variable region of DNA, flanked on either side by highly conserved regions (for primer binding)

Steps in Sanger 16S sequencing

- 1. purify DNA
- 2. PCR amplify the 16S rRNA gene
- 3. Sequence the PCR product
- 4. Compare sequence to database
- 5. Identify bacterial species

https://www.khanacademy.org/science/biology/biotech-dna-technology/dna-sequencing-pcr-electrophoresis/a/polymerase-chain-reaction-pcr

- 16S rRNA, informative region for evolutionary relatedness of bacteria
- Highly variable region of DNA, flanked on either side by highly conserved regions (for primer binding)

Steps in Sanger 16S sequencing

- 1. purify DNA
- 2. PCR amplify the 16S rRNA gene
- 3. Sequence the PCR product
- 4. Compare sequence to database
- 5. Identify bacterial species

• Sanger 16S sequencing, mixed infections

A

Lipska M, PLoS ONE '13. A Frameshift Mutation in the Cubilin Gene (CUBN) in Border Collies with Imerslund-Gräsbeck Syndrome

Rapid 16S rRNA Next-Generation Sequencing of Polymicrobial Clinical Samples for Diagnosis of Complex Bacterial Infections

Stephen J. Salipante^{1,2*}, Dhruba J. Sengupta¹, Christopher Rosenthal¹, Gina Costa⁴, Jessica Spangler⁴, Elizabeth H. Sims³, Michael A. Jacobs³, Samuel I. Miller³, Daniel R. Hoogestraat¹, Brad T. Cookson^{1,3}, Connor McCoy⁵, Frederick A. Matsen⁵, Jay Shendure², Clarence C. Lee⁴, Timothy T. Harkins⁴, Noah G. Hoffman^{1*}

Steps in NGS 16S sequencing

- 1. purify DNA
- 2. PCR amplify the 16S rRNA gene
- 3. Sequence the PCR product
 - (using next-generation sequencing)
- 4. Compare sequence<u>s</u> to database
 - Need a bioinformatics pipeline
- 5. Identify bacterial species

CASE REPORT

Molecular Diagnosis of *Actinomadura madurae* Infection by 16S rRNA Deep Sequencing

Stephen J. Salipante,^a Dhruba J. SenGupta,^a Daniel R. Hoogestraat,^a Lisa A. Cummings,^a Bronwyn H. Bryant,^a Catherine Natividad,^a Stephanie Thielges,^a Peter W. Monsaas,^a Mimosa Chau,^a Lindley A. Barbee,^{c,d} Christopher Rosenthal,^a Brad T. Cookson,^{a,b} Noah G. Hoffman^a

- 50 y.o. diabetic woman, 12-year history of gradually enlarging right foot with multiple draining lesions
- Punch biopsy: acute and chronic inflammation, filamentous structures consistent with aerobic actinomycetes
- Biopsy cultures overwhelmed with overgrowth of other organisms (*S. aureus*)
- FFPE block of biopsy, 16S rRNA Sanger sequencing: *S aureus*
- Performed 16S NGS analysis on FFPE specimen

TABLE 1 Deep-sequencing results

No. of	% of	
reads	reads	Classification ^a
13,000	35.94	Staphylococcus aureus*
4,402	12.17	Alcaligenes faecalis
3,049	8.43	Acinetobacter bereziniae/A. guillouiae*
1,449	4.01	Comamonas testosteroni*/C. thiooxidans*
1,084	3.00	Acinetobacter lwoffii*
935	2.59	Acinetobacter lwoffii*/A. psychrotolerans
924	2.55	Pseudomonas geniculata/P. hibiscicola; Stenotrophomonas maltophilia
748	2.07	Actinomadura madurae*
747	2.07	Flavobacterium lindanitolerans
738	2.04	Escherichia coli*/E. fergusonii*; Shigella dysenteriae*/S. flexneri*
654	1.81	Campylobacter concisus
476	1.32	Enterobacter cowanii; Escherichia coli*/E. hermannii; Shigella boydii/S. flexneri/S. sonnei
458	1.27	Staphylococcus epidermidis
417	1.15	Ochrobactrum anthropi*/O. cytisi*/O. lupini*
377	1.04	Enterobacter asburiae*/E. cancerogenus*/E. cloacae/E; cowanii; Leclercia adecarboxylata
4,120	11.39	≤99.0% match to a reference strain

- *S. aureus* reads were highly prevalent
- Many other organisms detected
- One of the classical agents of actinomycotic mycetoma, and consistent with the organism visualized histologically (filamentous, basophilic)
- *Actinomadura madurae* implicated as the cause of mycetoma; treated with TMP-SMX

Applications of next-generation sequencing (clinical and public health microbiology)

<u>Clinical microbiology</u>

- 16S deep sequencing for mixed infections
- Metagenomic CSF sequencing
- Viral resistance testing (HIV)
- Hospital outbreaks

Public health microbiology

- Foodborne disease outbreak detection
- Influenza surveillance

Metagenomic CSF sequencing

- 14 y.o. boy with severe combined immunodeficiency
- Presented with fever and headache 3 times over 4 months
- Progressed to hydrocephalus and status epilepticus
 - Necessitated medically-induced coma
- Extensive diagnostic workup (including brain biopsy) unrevealing

<u>Table S1.</u> Diagnostic testing for potential microbial causes of the patient's meningoencephalitis*.

Metagenomic CSF sequencing

- 14 y.o. boy with severe combined immunodeficiency
- Presented with fever and headache 3 times over 4 months
- Progressed to hydrocephalus and status epilepticus
 - Necessitated medically-induced coma
- Extensive diagnostic workup (including brain biopsy) unrevealing
- CSF subjected to unbiased next-generation sequencing
 - No PCR amplification
 - Extract and sequence all DNA from CSF
 - Most is human DNA (human cells)
 - A small amount could be a pathogen
- Over 3 million reads total; 475 (0.016%) reads were *Leptospira*
- *Leptospira-specific* PCR also positive
- Patient treated with 7-day course of intravenous penicillin G
- Gradually recovered over the next 7 days, with resolution of status epilepticus, normalization of CSF, and resolution of leptomeningitis
- Discharged 14 days after completing treatment

Metagenomic CSF sequencing

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing

Michael R. Wilson, M.D., Samia N. Naccache, Ph.D., Erik Samayoa, B.S., C.L.S., Mark Biagtan, M.D., Hiba Bashir, M.D., Guixia Yu, B.S.,
Shahriar M. Salamat, M.D., Ph.D., Sneha Somasekar, B.S., Scot Federman, B.A.,
Steve Miller, M.D., Ph.D., Robert Sokolic, M.D., Elizabeth Garabedian, R.N., M.S.L.S., Fabio Candotti, M.D., Rebecca H. Buckley, M.D., Kurt D. Reed, M.D.,
Teresa L. Meyer, R.N., M.S., Christine M. Seroogy, M.D., Renee Galloway, M.P.H.,
Sheryl L. Henderson, M.D., Ph.D., James E. Gern, M.D., Joseph L. DeRisi, Ph.D., and Charles Y. Chiu, M.D., Ph.D.

WEATHER ALERT There is 1 area under alert.

Local News

Experimental DNA test helps diagnose Cottage Grove teen

Next-generation genomic sequencing tests for viruses, bacteria, fungi

 By:
 Mary Ola

 Posted:
 Jun 12, 2014 02:47 PM CDT
 Updated: Nov 15, 2016 10:07 PM CST

COTTAGE GROVE, Wis. - This spring Cottage Grove teenager Joshua Osborn will most likely be found on his trampoline, which is a welcome change from last summer when the 15-year-old was hospitalized and in a coma.

 $https://www.channel3000.com/news/local-news/experimental-dna-test-helps-diagnose-cottage-grove-teen_20161116040713183/162917534$

Table 1. Confirmatory Diagnostic Testing for Neuroleptospirosis.*							
Assay†	Testing Site	Sample Type	Before Diagnosis <u>;</u>	After Diagnosis∷	Date of Test Result		
16S rRNA bacterial PCR assay	UW	CSF	Negative		July 14, 2013		
16S rRNA bacterial PCR assay	UW	CSF	Negative		Aug. 12, 2013		
16S rRNA bacterial PCR assay	UW	Serum		Negative	Aug. 24, 2013		
Leptospira PCR assays targeting <i>lipL32, lipL41, ompA, rpoB</i> , and <i>secY</i>	UCSF	CSF		Positive	Aug. 28, 2013		
Leptospira PCR assays targeting <i>lipL32, omp</i> A, and <i>secY</i>	UCSF	Serum		Negative	Aug. 28, 2013		
Leptospira culture	CDC	CSF		Negative	Oct. 15, 2013		
Leptospira PCR assay targeting <i>lipL32</i> with the use of a clinically validated assay ¹¹	CDC	CSF		Negative	Oct. 15, 2013		
16S rRNA bacterial PCR assay	CDC	CSF		Negative	Oct. 15, 2013		
Leptospira PCR assay targeting <i>lipL32</i> with the use of a clinically validated assay ¹¹	CDC	Serum		Negative	Oct. 15, 2013		
Leptospira IgM antibody with the use of dot blot ELISA	CDC	Serum		Negative	Oct. 15, 2013		
Leptospira IgM antibody with the use of dot blot ELISA	CDC	Serum		Negative (sample obtained on Oct. 9, 2013)	Oct. 17, 2013		
Leptospira PCR assays targeting <i>lipL32, omp</i> A, and <i>secY</i>	UCSF	Brain		Negative	Oct. 17, 2013		
Leptospira PCR assays targeting <i>lipL32</i> , <i>omp</i> A, and <i>secY</i>	UCSF	Serum		Negative	Oct. 31, 2013		
Leptospira PCR assay targeting <i>lipL32</i> with the use of a clinically validated assay and a change in the amplification mix ¹¹	CDC	CSF		Positive	Jan. 16, 2014		
Leptospira IgM antibody with the use of latex agglutination ELISA ¹²	CDC	Serum		Positive (sam ple obt ained on Oct. 9, 2013)	Feb. 6, 2014		
Leptospira PCR assay targeting <i>lipL32</i> with the use of a clinically validated assay and a change in the amplification mix ¹¹	CDC	CSF		Negative (sample obtained on Feb. 5, 2014)	Feb. 24, 2014		

Applications of next-generation sequencing (clinical and public health microbiology)

<u>Clinical microbiology</u>

- 16S deep sequencing for mixed infections
- Metagenomic CSF sequencing
- Viral resistance testing (HIV)
- Hospital outbreaks

Public health microbiology

- Foodborne disease outbreak detection
- Influenza surveillance

Viral resistance testing

- Most common HIV resistance testing
 - Extract RNA from sample
 - PCR amplify certain regions (pol)
 - Sanger sequence the amplified regions
 - Use a database to identify mutations associated with drug resistance

https://www.hiv.uw.edu/go/antiretroviral-therapy/evaluation-management-virologic-failure/core-concept/all therapy/evaluation-management-virologic-failure/core-concept/all therapy/evaluation-management-virologic-failure/core-

Viral resistance testing

Stanford University **HIV DRUG RESISTANCE DATABASE**

A curated public database to represent, store and analyze HIV drug resistance data.

Sanger sequencing	Next-generation sequencing
Manual process (no multiplexing)	Multiplexing readily available
High volume, more expensive	High volume, can be cheaper
Identifies mutations where majority of virus has mutated	Can identify low-prevalence mutations (<10%)

Applications of next-generation sequencing (clinical and public health microbiology)

<u>Clinical microbiology</u>

- 16S deep sequencing for mixed infections
- Metagenomic CSF sequencing
- Viral resistance testing (HIV)
- Hospital outbreaks

Public health microbiology

- Foodborne disease outbreak detection
- Influenza surveillance

Hospital outbreaks

- Whole-genome sequencing of bacterial isolates
- Unparalleled resolution
 - Every A, T, C, G visible
- Can replace pulsed-field gel electrophoresis (PFGE) for investigating outbreaks

RESEARCH ARTICLE

A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota

Applications of next-generation sequencing (clinical and public health microbiology)

<u>Clinical microbiology</u>

- 16S deep sequencing for mixed infections
- Metagenomic CSF sequencing
- Viral resistance testing (HIV)
- Hospital outbreaks

Public health microbiology

- Foodborne disease outbreak detection
- Influenza surveillance

PulseNet International: On the path to implementing whole genome sequencing for foodborne disease surveillance

Why are PulseNet International members moving toward WGS?

- WGS is more precise and provides more detailed information about bacteria than traditional methods such as pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA).
- WGS will streamline workflow practices by replacing traditional methods for characterization of isolates, thereby making outbreak detection and characterization faster.
- WGS can be used for most foodborne disease organisms, including *Salmonella*, *Listeria*, *Campylobacter*, *Escherichia coli*, *Vibrio*, and *Shigella*.
- Data can be used across laboratories for routine surveillance, outbreak identification, source attribution, antimicrobial resistance prediction, and reference characterization.

Applications of next-generation sequencing (clinical and public health microbiology)

<u>Clinical microbiology</u>

- 16S deep sequencing for mixed infections
- Metagenomic CSF sequencing
- Viral resistance testing (HIV)
- Hospital outbreaks

Public health microbiology

- Foodborne disease outbreak detection
- Influenza surveillance

- nextflu.org uses all global influenza sequence information
- U.S. sequence data comes from NGS
 - PCR-based amplification of each influenza gene segment
 - Next-generation sequencing
 - Data uploaded through CDC bioinformatics pipeline
- Informing influenza vaccine strain selection and identifies drug resistant mutations

Real-time tracking of influenza A/H3N2 evolution

Showing 2017 of 2017 genomes, from 10 regions, from 109 countries, dated May 2011 to Apr 2018.

nextflu.org

Questions?

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN