Molecular Diagnostics in the Context of Women's Health; Introduction to Syndromic Panels and A Cautionary Tale

Sarah Stoner, Eric Beck, Erik Munson

Wisconsin Clinical Laboratory Network Laboratory Technical Advisory Group

OUTLINE

- I. Non-ulcerative sexually-transmitted agents
- II. Ulcerative STI agents
- III. Other issues related to women's health
 - Streptococcus agalactiae Human papillomavirus Bacterial vaginosis

OUTLINE

Centers for Disease Control and Prevention

Morbidity and Mortality Weekly Report

June 5, 2015

Sexually Transmitted Diseases Treatment Guidelines, 2015

-transmitted agents

I-Clicker Warm-up Question

I-CLICKER WARMUP

Where does Wisconsin rank in State Public Health Budget (2016-2017 fiscal data) per capita?

- A. Top 25%
- B. 50th percentile to 75th percentile
- C. 25th percentile to 50th percentile
- D. Bottom 25%

A Funding Crisis for Public Health and Safety:

STATE-BY-STATE PUBLIC HEALTH FUNDING AND KEY HEALTH FACTS

Introduction

A healthy United States is a strong United States. A prepared nation is a safe nation. But persistent underfunding of the country's public health system has left the nation vulnerable.

DATA SUMMARY

 Range \$5.74 per capita to \$135.37 per capita Mean \$35.65 per capita

Wisconsin is 40th at \$14.47 per capita

tfah.org/reports

DATA SUMMARY

 Range \$5.74 per capita to \$135.37 per capita Mean \$35.65 per capita

Wisconsin is 40th at \$14.47 per capita

Top Five

Big (fourteen) Ten

DC Alaska Hawaii New York Iowa

Iowa \$68.69 Minnesota \$63.96 Nebraska \$45.11 Maryland \$40.55 New Jersey \$25.96

Illinois \$25.76 Michigan \$12.83 Pennsylvania \$12.63 Indiana \$12.57 Ohio \$12.38

tfah.org/reports

Non-ulcerative Sexually-transmitted Disease

STD AWARENESS

DO IT FOR CONFIDENCE PEACE OF MIND Y O U #GYT #STDMonth

Top 25 Tests by Volume at Five Referral Hospitals

Rank	AKUH, Nairobi	CA, Bangalore	UCH, Ibadan	UMMC, Kuala Lumpur	Denver Health
1	CBC	CBC ^a	CBC	CBC	CBC
2	Urinalysis	Glucose	Electrolytes, urea, and creatinine	Renal function	Basic metabolic panel ^b
3	Urea, electrolytes	Creatinine	Glucose	Liver function	Glucose
4	Stool microscopy	TSH	Urinalysis	Blood glucose	Urinalysis
5	Glucose	Thyroid function	Blood group and crossmatch	Magnesium serum	Chlamydia detection
6	C-reactive protein	Renal function	Liver function	Lipid profile	HbA _{1C}
7	Malarial parasites	Urinalysis	Lipid profile	PT/INR	Phosphorus
8	Stool Helicobacter pylori antigen	Potassium	Blood film for malaria parasite	APTT	Magnesium
9	Liver function	Liver function	Urine microscopy	Urinalysis	PT/INR
10	Urine microscopy	Platelet count	AFB studies	HbA _{1C}	Comprehensive metabolic panel ^c
11	Surgicals ^d	Urine culture	PT/INR	Blood group	TSH
12	Crossmatch	Lipid profile	Other microscopy	Calcium, phosphorus	Liver function
13	Malaria antigen	PCV	Surgicals	Blood culture®	Lipid panel ¹
14	HbA _{ic}	HbA _{1C}	Hb electrophoresis	HBsAg	PTT
15	Lipid profile	Vitamin B ₁₂	Cytology	HIV combo	Troponin-I
16	HİV	Hemoglobin	Syphilis	HCV	Urine culture
17	Thyroid function	Sodium	Blood culture	C-reactive protein	Blood group
18	ESR	Vitamin D	ESR	CKMB	Lactate
19	TSH	Blood group	HIV	ESR	Antibody screen
20	Unit packed RBCs	Calcium	Blood group	Thyroid function	Drugs of abuse screen, urine
21	Pregnancy	Coagulation profile	HCV	Syphilis	Cytology
22	Cytology	CBC with ESR	Stool microscopy	Troponin	Syphilis
23	Calcium	Blood culture	HBsAg	Uric acid serum	Surgicals
24	Blood culture	Electrolytes	HbA _{1C}	Lactate	Blood culture
25	Syphilis	ALT	Phosphorus	Urine culture	Pregnancy

Am. J. Clin. Pathol. **151**: 446-451; 2019

Top 25 Tests by Volume at Five Referral Hospitals

	-					
Rank	AKUH, Nairobi	CA, Bangalore	UCH, Ibadan	UMMC, Kuala Lumpur	Denver Health	Denver Health
1	CBC	CBC ^a	CBC	CBC	CBC	Chlamydia detection
2	Urinalysis	Glucose		Renal function	Basic metabolic panel ^b	-
-			creatinine			Basic metabolic panel
3	Urea, electrolytes	Creatinine	Glucose	Liver function	Glucose	
4	Stool microscopy	TSH	Urinalysis	Blood glucose	Urinalysis	CBC
5	Glucose	Thyroid function	Blood group and crossmatch		Chlamydia detection	
6	C-reactive protein	Renal function	Liver function	Lipid profile	HbA _{1c}	Drugs of abuse screen,
7	Malarial parasites	Urinalysis	Lipid profile	PT/INR	Phosphorus	urine
8	Stool Helicobacter pylori	Potassium	Blood film for malaria	APTT	Magnesium	TSH
	antigen		parasite			Surgicals
9	Liver function	Liver function	Urine microscopy	Urinalysis	PT/INR	HbA _{1c}
10	Urine microscopy	Platelet count	AFB studies	HbA _{1c}	Comprehensive metabolic	Glucose
				10	panel ^c	
11	Surgicals ^d	Urine culture	PT/INR	Blood group	TSH	Comprehensive metabolic
12	Crossmatch	Lipid profile	Other microscopy	Calcium, phosphorus	Liver function	panel
13	Malaria antigen	PCV	Surgicals	Blood culture ^e	Lipid panel ^r	Lipid panel
14	HbA _{1C}	HbA _{1C}	Hb electrophoresis	HBsAg	PTT	Magnesium
15	Lipid profile	Vitamin B ₁₂	Cytology	HIV combo	Troponin-I	Phosphorus
16	HIV	Hemoglobin	Syphilis	HCV	Urine culture	Liver function
17	Thyroid function	Sodium	Blood culture	C-reactive protein	Blood group	Urinalysis
18	ESR	Vitamin D	ESR	CKMB	Lactate	Urine culture
19	TSH	Blood group	HIV	ESR	Antibody screen	PT/INR
20	Unit packed RBCs	Calcium	Blood group	Thyroid function	Drugs of abuse screen, urine	Troponin-I
21	Pregnancy	Coagulation profile	2 .	Syphilis	Cytology	PTT
22	Cytology	CBC with ESR	Stool microscopy	Troponin	Syphilis	Blood culture
23	Calcium	Blood culture	HBsAg	Uric acid serum	Surgicals	
24	Blood culture	Electrolytes	HbA	Lactate	Blood culture	Cytology
25	Syphilis	ALT	Phosphorus	Urine culture	Pregnancy	Blood group
	- /					Antibody screen
						Partitional and an

Am. J. Clin. Pathol. 151: 446-451; 2019

Syphilis Lactate Pregnancy

I-Clicker Real Question 1

I-CLICKER REAL QUESTION 1

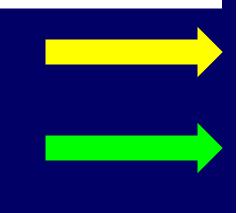
Does your laboratory perform routine screening for *Chlamydia trachomatis* and *Neisseria gonorrhoeae*?

A. Yes, we use a Roche system.

- B. Yes, we use a Cepheid system.
- C. Yes, we use a Becton Dickinson system.
- D. Yes, we use a Hologic system.

E. No / hey, you did not mention our system.

EXTRA-UROGENITAL SCREENING


Gender	Source	n	Detection Rate (%)		
			C. trachomatis	N. gonorrhoeae	
Famala	Pharynx	167	1.2	1.8	
Female	Rectum	51	3.9	2.0	
Male	Pharynx	3910	1.0	3.8	
IVIAIE	Rectum	1864	7.0	7.0	

Courtesy of K. Munson, Ph.D.

EXTRA-UROGENITAL SCREENING

Diagnostic Considerations for Acute Proctitis

Persons who present with symptoms of acute proctitis should be examined by anoscopy. A Gram-stained smear of any anorectal exudate from anoscopic or anal examination should be examined for polymorphonuclear leukocytes. All persons should be evaluated for HSV (by PCR or culture), *N. gonorrhoede* (NAAT or culture), *C. trachomatis* (NAAT), and *T. pallidum* (Darkfield if available and serologic testing) (see pathogen-specific sections). If the *C. trachomatis* test is positive on a rectal swab, a molecular test PCR for LGV should be performed, if available, to confirm an LGV diagnosis (see LGV) (394).

The following screening tests should be performed at least annually for sexually active MSM, including those with HIV infection.

- HIV serology, if HIV status is unknown or negative and the patient himself or his sex partner(s) has had more than one sex partner since most recent HIV test.
- Syphilis serology to establish whether persons with reactive tests have untreated syphilis, have partially treated syphilis, are manifesting a slow serologic response to appropriate prior therapy, or are serofast.
- A test for urethral infection[†] with *N. gonorrhoede* and *C. trachomatis* in men who have had insertive intercourse[§] during the preceding year (testing of the urine using NAAT[†] is the preferred approach).
- A test for rectal infection[†] with N. gonorrhoede and C. trachomatis in men who have had receptive anal intercourse[§] during the preceding year (NAAT of a rectal specimen is the preferred approach).
- A test for pharyngeal infection[†] with *N. gonorrhoede* in men who have had receptive oral intercourse[§] during the preceding year (NAAT of a pharyngeal specimen is the preferred approach). Testing for *C. trachomatis* pharyngeal infection is not recommended.

Sexually Transmitted Diseases Treatment Guidelines, 2015

I-Clicker Real Question 2

I-CLICKER REAL QUESTION 2

Does your laboratory perform extra-urogenital screening for *Chlamydia trachomatis* and *Neisseria gonorrhoeae*?

A. Yes, we do.

B. Yes, and it took a bit of work.

C. No, we do not.

D. No, but maybe we should.

I-CLICKER REAL QUESTION 2A

If you answered "no" to the previous question, please select the response that best summarizes the reasoning.

A. No demand from stakeholders

B. Too costly

C. The assay we run does not allow us to offer this testing.

D. Is it time for morning break yet?

Commercial molecular diagnostic testing options available in the United States and cleared by the Food and Drug Administration (FDA) for Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis

General Format	Method	Distributor	Assay	FDA-Cleared Indications	Notes
DNA amplification	Polymerase chain reaction	Abbott Molecular Incorporated	Abbott RealTime CT/NG ^a (Abbott m2000 platform)	Endocervical swab Vaginal swab Urethral swab Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients (with exception of endocervical and urethral swabs only indicated on symptomatic patients)
		BD Diagnostic Systems	BD MAX CT/GC/TV ^a assay (BD MAX platform)	Endocervical swab Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		Cepheid	Xpert CT/NG ^a (GeneXpert Instrument platform)	Endocervical swab Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		Roche Diagnostics Corporation	AMPLICOR CT/NG ^a Test	Endocervical swab Urethral swab Male urine	Symptomatic or asymptomatic patients (with exception of urethral swab only indicated on symptomatic patients)
		Roche Molecular Systems, Incorporated	cobas CT/NGª v2.0 Test (cobas 4800 platform)	Endocervical swab Vaginal swab PreservCyt collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		Roche Molecular Systems, Incorporated	cobas CT/NG ^a (cobas 6800/8800 platform)	Endocervical swab Vaginal swab PreservCyt collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients

Commercial molecular diagnostic testing options available in the United States and cleared by the Food and Drug Administration (FDA) for Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis

General Format	Method	Distributor	Assay	FDA-Cleared Indications	Notes
	Strand displacement amplification	Becton, Dickinson and Company	BD ProbeTec N gonorrhoeae (GC) Q ^x Amplified DNA Assay (BD Viper or Viper LT platforms)	Endocervical swab Urethral swab PreservCyt, SurePath collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		Becton, Dickinson and Company	BD ProbeTec C trachomatis (CT) Q ^x Amplified DNA Assay (BD Viper or Viper LT platforms)	Endocervical swab Urethral swab PreservCyt, SurePath collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		Becton, Dickinson and Company	BD ProbeTec ET <i>C trachomatis</i> and <i>N</i> <i>gonorrhoeae</i> ^a Amplified DNA Assays (BD ProbeTec ET or Viper platforms)	Endocervical swab Urethral swab Female urine Male urine	Symptomatic or asymptomatic patients

Commercial molecular diagnostic testing options available in the United States and cleared by the Food and Drug Administration (FDA) for Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis

General Format	Method	Distributor	Assay	FDA-Cleared Indications	Notes
RNA amplification	Transcription- medicated amplification	Hologic, Incorporated	Aptima Combo 2 Assay ^a (Panther platform)	Endocervical swab Vaginal swab Urethral swab PreservCyt collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		Hologic, Incorporated	Aptima Combo 2 Assay ^a (Tigris or semiautomated platform)	Endocervical swab Vaginal swab Urethral swab PreservCyt collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients (with exception of patient-collected vaginal swab only indicated on asymptomatic patients)
		Hologic, Incorporated	Aptima N gonorrhoeae Assay (Tigris or semiautomated platform)	Endocervical swab Vaginal swab Urethral swab PreservCyt collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients (with exception of patient-collected vaginal swab only indicated on asymptomatic patients; with exception of urethral swab only indicated on symptomatic patients)
		Hologic, Incorporated	Aptima C <i>trachomatis</i> Assay (Tigris or semiautomated platform)	Endocervical swab Vaginal swab Urethral swab PreservCyt collection Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients (with exception of patient-collected vaginal swab only indicated on asymptomatic patients)

I-Clicker Real Question 3

I-CLICKER REAL QUESTION 3

Which of the following is your laboratory's primary means of assessing (female) specimens for *Trichomonas vaginalis*?

A. Wet mount

- B. Antigen assays (such as OSOM)
- C. Hybridization assays (such as BD Affirm VP III)
- D. Nucleic acid amplification

E. We really do a combination of these methods.

OTHER T. vaginalis DETECTION

Modality	Performance Indices (%)				
	Sensitivity	Specificity	Reference		
Mat mount microcopy	48.1	99.8	1		
Wet mount microscopy	47.1	100.0	2		
Antigon dotaction	78-84	99-100	3		
Antigen detection	35.1	99.9	4		
Nucleic acid hybridization	63.4	99.9	5		

¹J. Clin. Microbiol. 46: 3368-3374; 2008
²Diagn. Microbiol. Infect. Dis. 68: 66-72; 2010
³Sex. Transm. Infect. 86: 514-519; 2010
⁴J. Clin. Microbiol. 54: 500-501; 2016
⁵J. Clin. Microbiol. 49: 866-869; 2011

T. vaginalis ANTIGEN DETECTION

Low-prevalence

6.4% *C. trachomatis*0.6% *N. gonorrhoeae*4.0% *T. vaginalis* molecular

35.1% antigen sensitivity 99.9% specificity kappa 0.502

High-prevalence

11.2% C. trachomatis6.1% N. gonorrhoeae21.4% T. vaginalis molecular

85.7% antigen sensitivity 100.0% specificity kappa 0.904

• Similar symptomatic rate in false-negative antigen patients as true-positive antigen patients ($P \ge 0.17$)

J. Clin. Microbiol. 54: 500-501; 2016

TESTING OF MALES

	Number of specimens			Sensitivity		Specificity		Predictive value (%)		
Diagnostic method and specimen	True positive	False positive	False negative	True negative	%	95% CI	%	95% CI	Positive	Negative
	Infected p	atient status	; algorithm							
Culture	12	0	0	286	100	69.9-100	100	98.3-100	100	100
PCR - Urethral swab	11	13	1	273	91.7	59.8-99.6	95.5	92.2-97.5	45.8	99.6
PCR - Urine	11	9	1	277	91.7	59.8-99.6	96.9	93.9-98.5	55.0	99.6
ATV - Urethral swab	11	38	1	248	91.7	59.8-99.6	86.7	82.1-90.3	22.5	99.6
ATV - Urine	11	23	1	263	91.7	59.8-99.6	91.9	88.0-94.7	32.1	99.6
	Molecular	resolved alç	porithm							
Culture	12	0	30	256	28.6	16.2-44.8	100	98.2-100	100	89.4
PCR - Urethral swab	23	0	19	256	54.8	38.8-69.8	100	98.2-100	100	93.1
PCR - Urine	20	0	22	256	47.6	32.3-63.4	100	98.2-100	100	92.0
ATV - Urethral swab	40	9	2	247	95.2	82.6-99.2	96.5	93.2-98.3	81.7	99.2
ATV - Urine	31	4	11	252	73.8	57.7-85.6	98.4	95.8-99.5	88.6	95.8

Am. J. Obstet. Gynecol. 200: 188.e1-188.e7; 2009 (adapted)

Commercial molecular diagnostic testing options available in the United States and cleared by the Food and Drug Administration (FDA) for Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis

General Format	Method	Distributor	Assay	FDA-Cleared Indications	Notes
Detection of Tvag	inalis-specific nuc	leic acid			
Nucleic acid hybridization	DNA probe	Becton, Dickinson and Company	Affirm VPIII Microbial Identification Test (manual platform)	Vaginal fluid specimens from patients with symptoms of vaginitis/vaginosis	Additional detection of Candida albicans and Gardnerella vaginalis
DNA amplification	Helicase- dependent amplification	Quidel Corporation	Solana Trichomonas Assay (Solana platform)	Vaginal swab Female urine	Symptomatic or asymptomatic patients
	Polymerase chain reaction	BD Diagnostic Systems	BD MAX CT/GC/TV ^a assay (BD MAX platform)	Endocervical swab Patient-collected vaginal swab Female urine	Symptomatic or asymptomatic patients
		Cepheid	Xpert TV (GeneXpert Instrument platform)	Endocervical swab Patient-collected vaginal swab Female urine Male urine	Symptomatic or asymptomatic patients
		GeneOhm Sciences (BD Diagnostics) Canada, Incorporated	BD MAX Vaginal Panel (BD MAX platform)	Vaginal swab	Symptomatic patients; additional detection of bacteria associated with bacterial vaginosis and <i>Candida</i> spp. associated with vulvovaginal candidiasis
	Strand displacement amplification	Becton, Dickinson and Company	BD ProbeTec <i>T vaginalis</i> (TV) Q ^x Amplified DNA Assay (BD Viper platform)	Endocervical swab Patient-collected vaginal swab Female urine	Symptomatic or asymptomatic patients
RNA amplification	Transcription- mediated amplification	Hologic, Incorporated	Aptima <i>T vaginalis</i> Assay (Panther platform)	Endocervical swab Vaginal swab PreservCyt collection	Symptomatic or asymptomatic patients
		Hologic, Incorporated	Aptima <i>T vaginalis</i> Assay (Tigris platform)	Endocervical swab Vaginal swab Female urine PreservCyt collection	Symptomatic or asymptomatic patients

I-Clicker Real Question 4

I-CLICKER REAL QUESTION 4

Does your laboratory perform any laboratory-modified or laboratory-developed testing?

A. Yes, we do/have.

B. Yes; it would please me greatly to share with audience.

C. No, we do not.

D. No, but please tell me more about LDT.

REGULATORY ELEMENTS

College of American Pathologists

Extensive verification study

Large n Ensure sufficient "positives" Consider predicate device Consider cross-reactive specimens

Multiple operators; multiple days

COLLEGE of AMERICAN PATHOLOGISTS

REGULATORY ELEMENTS

- College of American Pathologists
- Extensive verification study
- Verification report

Background; literature review Methods (specimens)

Accuracy

Precision (concordance; coefficient of variation) Analytical specificity (interfering substances) Analytical sensitivity (limit of detection) Establish/verify reference range

REGULATORY ELEMENTS

- College of American Pathologists
- Extensive verification study
- Verification report

Comment on patient report (COM.40850)

"Performance characteristics of...screening have been determined by Really Good Wisconsin Laboratory and published (J. Clin. Microbiol. 51:xxxx-xxxx; 2013). Although not FDA-approved, the FDA has determined this approval is not necessary."

ORDERING PRACTICES

Testing Modality	Percentage of Female Genital Swabs			
	2004-2007	2008-2010	<i>P</i> value	
Any wet mount preparation	66.2	57.7	< 0.0002	
Point-of-care wet mount preparation	27.8	22.4	< 0.0002	
Any assessment for Trichomonas vaginalis	66.2	83.6	< 0.0002	
Chlamydia trachomatis/Neisseria gonorrhoeae TMA	80.4	83.7	< 0.0002	

WMJ **111:** 39-42; 2012

ORDERING PRACTICES

Testing Modality	Percentage of Female Genital Swabs			
	2004-2007	2008-2010	<i>P</i> value	
Any wet mount preparation	66.2	57.7	< 0.0002	
Point-of-care wet mount preparation	27.8	22.4	< 0.0002	
Any assessment for Trichomonas vaginalis	66.2	83.6	< 0.0002	
Chlamydia trachomatis/Neisseria gonorrhoeae TMA	80.4	83.7	< 0.0002	

Testing Modality	Percentage Positive			
	2004-2007	2008-2010	<i>P</i> value	
Any wet mount preparation	5.5	4.5	0.054	
Any assessment for Trichomonas vaginalis	5.5	7.9	< 0.0002	

WMJ 111: 39-42; 2012

"You know, ever since we started doing your new Trich test, we still notice guys with obvious urethritis, but still have negative results for chlamydia, gonorrhea, and Trich. I really think that it's *Mycoplasma*; can you test for this?"

R. Gremminger, M.D. circa 2010

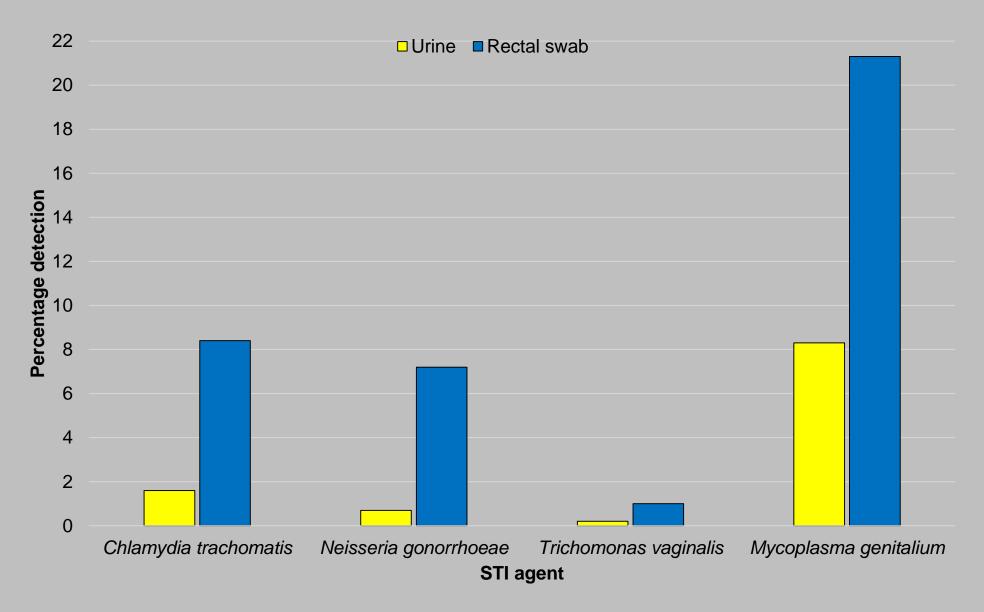
Molecular Diagnostics Update for the Emerging (If Not Already Widespread) Sexually Transmitted Infection Agent *Mycoplasma genitalium*: Just About Ready for Prime Time

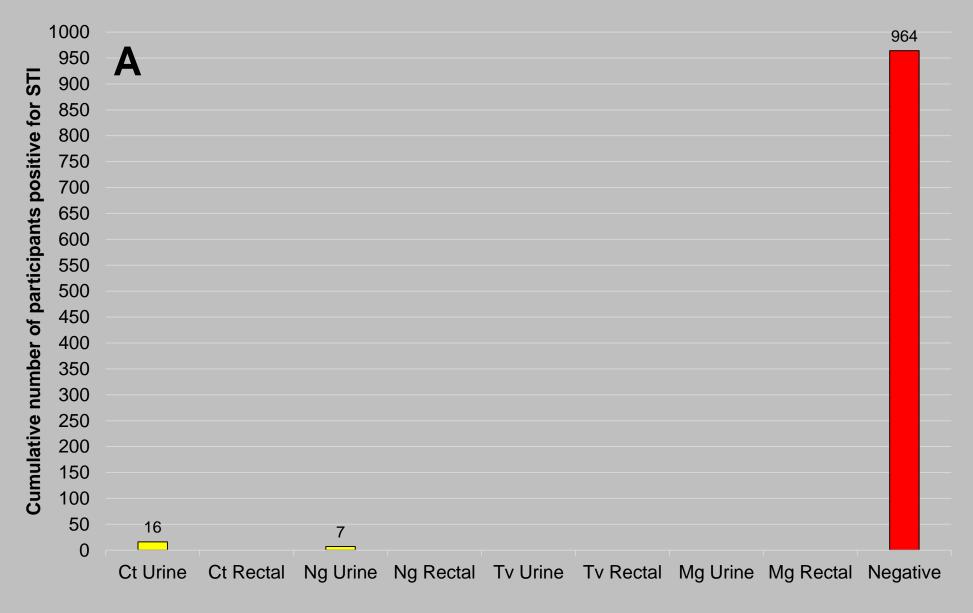
Journal of

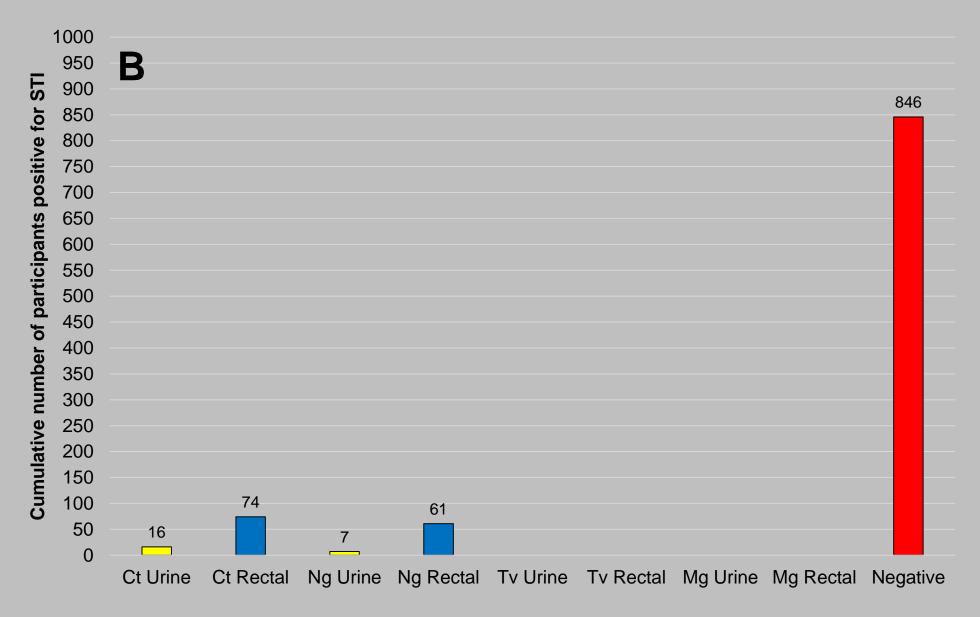
Clinical Microbiology®

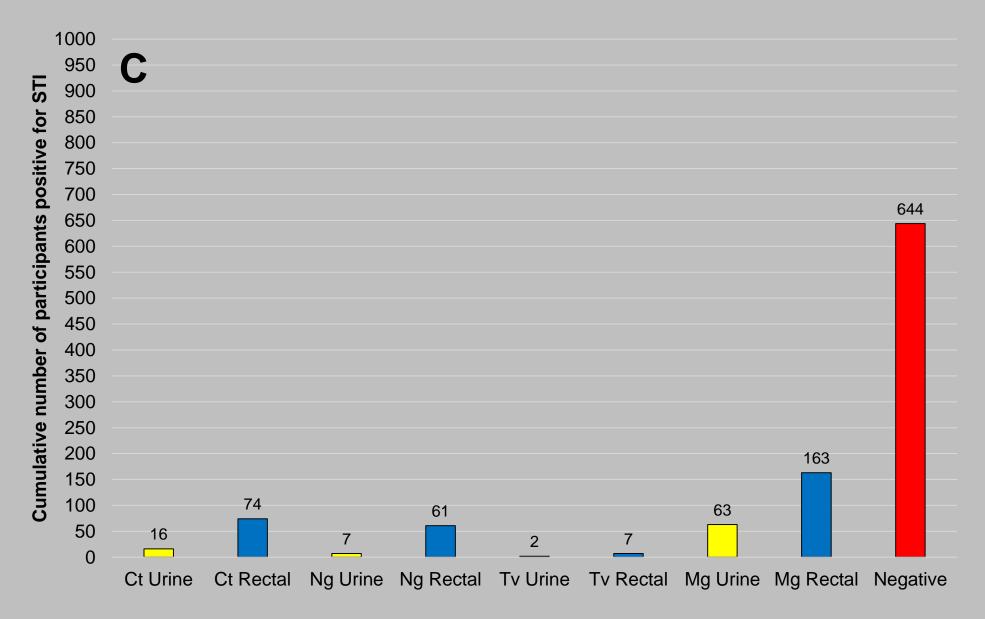
ABSTRACT Mycoplasma genitalium is an important and emerging agent of sexually transmitted infection in females and males, carrying the potential for postinfection genital tract sequelae. Past efforts to identify this organism on a routine basis, which were problematic due to the fastidious nature of the bacterium and its antigenic intricacies, have recently become supplemented by molecular diagnostics. A number of these assays are available commercially. This minireview describes the format and performance indices of a number of *M. genitalium* DNA- and RNA-based amplification assays; many of these assays have contributed to an improved clinical and epidemiologic understanding of this organism.

KEYWORDS Mycoplasma genitalium, PCR, molecular diagnostics, transcriptionmediated amplification


J. Clin. Microbiol. 55: 2894-2902; 2017


DETECTION % BY LOCATION


Location	n	Chlamydia	Neisseria	Trichomonas	M. ger	nitalium
Location			Overall Detection	Sole Detection ^a		
Outpatient OB/GYN #1	406	6.9	0.5	6.7	10.6	85.7
ER/urgent care #1	309	13.3	3.9	20.1	20.4	65.1
Outpatient OB/GYN #2	238	4.2	2.5	7.1	14.7	82.9
ER/urgent care #2	123	4.9	2.4	10.6	13.8	64.7
Urban family care #1	133	3.8	0.8	12.0	13.5	61.1
Suburban family care #1	88	4.6	0.0	6.8	6.8	83.3
ALL LOCATIONS	2478	6.2	1.4	9.0	11.4	72.0


^aPercentage of *M. genitalium* detections not involving co-detection with another agent

J. Clin. Microbiol. 54: 432-438; 2016

SNCBI Resources How To Publed.gov PubMed US National Library of Medicine National Institutes of Health Advanced Help

PubMed

PubMed comprises more than 29 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

ORIGINAL ARTICLE

CAUTION I

Evaluation of Seeplex[®] STD6 ACE Detection kit for the diagnosis of six bacterial sexually transmitted infections

Abstract Traditionally, the diagnosis of bacterial sexually transmitted infection (STI) has been dependent on the isolation of the causative pathogens by culturing endocervical or urethral swab specimens on selective media. While such procedures typically provide excellent diagnostic accuracy, they are often time-consuming and expensive. Amultiplex polymerase chain reaction (PCR) assay, based on a semi-automated detection system, was evaluated for the detection of six STI causative organisms. The Seeplex® STD6 ACE (auto-capillary electrophoresis) Detection assay employed six pairs of dual priming oligonucleotide (DPO[™]) primers specifically targeted to unique genes of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Ureaplasma urealyticum, Mycoplasma hominis, and Trichomonas vaginalis. A total of 739 specimens (304 cervical swabs and 435 urine samples) collected for 4 months were tested, and results were compared to those obtained with a combined monoplex PCR. The concordance between the multiplex PCR and monoplex PCR assay was 100% for both sensitivity and specificity. We also tested for the presence of two pathogenic bacteria (C. trachomatis and N. gonorrhoeae) and compared the

results obtained with the multiplex PCR and BD ProbeTec duplex strand displacement amplification (SDA). The results of the multiplex PCR and duplex SDA were 99.7% concordant for *C. trachomatis* and 100% concordant for *N. gonorrhoeae*. The multiplex PCR assay using the Seeplex[®] STD6 ACE Detection kit proved to be a novel cost-effective and fast diagnostic tool with high sensitivity and specificity for the simultaneous detection of six STI pathogens.

Keywords Diagnosis · Sexually transmitted infection · Bacterial and parasite infection · Multiplex PCR

SUBOPTIMAL REFERENCE METHOD

Monoplex PCR assay

In contrast to multiplex PCR, only one pair of primers was used to detect the target organism in the monoplex PCR using Seegene DPOTM technology [12]. PCR amplification was performed with the Seeplex[®] *C. trachomatis* Detection kit, Seeplex[®] *N. gonorrhoeae* Detection kit, Seeplex[®] *M. genitalium* Detection kit, Seeplex[®] *U. urealyticum* Detection kit, Seeplex[®] *M. hominis* Detection kit, and Seeplex[®] *T. vaginalis* Detection kit (Seegene) respectively, according to the manufacturer's instructions. The internal control was present in the PCR mixture. Therefore, the internal control was used as the sole check for possible PCR inhibition.

Table 1 Comparison of results between multiplex polymerase chain reaction (PCR) and monoplex PCR (n = 739)

Target pathogen	Monoplex PCR	Multiplex	Multiplex PCR		
		Positive	Negative		
Chlamydia trachomatis	Positive	40	0		
	Negative	0	699		
Neisseria gonorrhoeae	Positive	32	0		
	Negative	0	707		
Mycoplasma genitalium	Positive	2	0		
	Negative	0	737		
Ureaplasma urealyticum	Positive	157	0		
	Negative	0	582		
Mycoplasma hominis	Positive	82	0		
	Negative	0	657		
Trichomonas vaginalis	Positive	7	0		
	Negative	0	732		

J. Infect. Chemother. 18: 494-500; 2012

CAUTION II

STD&AIDS

International Journal of STD & AIDS 2016, Vol. 27(14) 1275–1282 (© The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0956462415615775 std.sagepub.com

Multiplex PCR testing for nine different sexually transmitted infections

Abstract

Current sexually transmitted infection (STI) testing is not optimal due to delays in reporting or missed diagnoses due to a lack of comprehensive testing. The FilmArray[®] (BioFire Diagnostics, LLC, Salt Lake City, Utah) is a user-friendly, fully automated, multiplex PCR system that is being developed for rapid point-of-care use. A research-use-only STI panel including multiple PCR primer sets for each organism was designed to detect *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Treponema pallidum*, *Trichomonas vaginalis*, *Mycoplasma genitalium*, *Ureaplasma urealyticum*, *Haemophilus ducreyi*, and herpes simplex virus (HSV) types 1 and 2. Standard clinical testing included Gram stain, nucleic acid amplification, wet mount examination, herpes simplex virus culture, and syphilis lgG. Standard clinical tests were not available for all the organisms tested by the FilmArray STI panel. Two hundred and ninety-five clinical specimens from 190 subjects were directly compared to standard testing. Urine (n = 146), urethral/cervical swabs (31), oral swabs (60), rectal swabs (43), and ulcer swabs (15) were tested. Among the tested samples, FilmArray detected *C. trachomatis* in 39 (13%), *N. gonorrhoeae* in 20 (7%), *T. vaginalis* in nine (3%), HSV 1 in five (2%), HSV 2 in five (2%), *U. urealyticum* in 36 (12%), *M. genitalium* in eight (3%), and *T. pallidum* in 11 (4%). Concordance between the FilmArray STI panel and standard nucleic acid amplification testing for *C. trachomatis* was 98% and for *N. gonorrhoeae* was 97%. Multiplex PCR STI testing has the potential to improve public health by providing rapid, sensitive, and reliable results within the clinic or nearby laboratory.

Keywords

FilmArray, sexually transmitted diseases, sexually transmitted infections, STI, diagnostic test performance, multiplex PCR

NO REFERENCE METHOD

Table 1. Standard clinical testing methods employed at the **status status of the study**. Urethral Gram stains were used in patients with suspected urethritis, in addition to nucleic acid amplification testing (NAAT). NAAT for *T. vaginalis* was not employed as a standard clinical test due to the expense and low prevalence of this disease in the patient population. Amplification testing for *M. genitalium* and *U. urealyticum* were not commercially available at the time of the study. *H. ducreyi* has not been identified in this population.

Organism	Standard testing
Chlamydia trachomatis	NAAT (Roche Amplicor)
eisseria gonorrhoeae	a) Urethral Gram stain, b) NAAT (Roche Amplicor)
eponema pallidum	a) Syphilis IgG (Captia), b) RPR staging of all IgG positives c) TP-PA tie breaker, if necessary (reverse sequence syphilis screening)
homonas vaginalis	Wet mount examination
VI	HSV culture
V2	HSV culture
coplasma genitalium	None
eaplasma urealyticum	None
emophilus ducreyi	Clinical examination, Gram stain

RPR: rapid plasma reagin; HSV: herpes simplex virus.

Int. J. STD AIDS 27: 1275-1282; 2016

LOW NUMBERS

Table 1. Standard clinical testing methods employed at the **status status of the study**. Urethral Gram stains were used in patients with suspected urethritis, in addition to nucleic acid amplification testing (NAAT). NAAT for *T. vaginalis* was not employed as a standard clinical test due to the expense and low prevalence of this disease in the patient population. Amplification testing for *M. genitalium* and *U. urealyticum* were not commercially available at the time of the study. *H. ducreyi* has not been identified in this population.

Organism

Chla

Standard testing

Neis:	Table 4. Results for specimens (by type) tested by the FilmArray STI panel. Two hundred and ninety-five specimens from 190
	subjects were selected for testing on the FilmArray device. The table header shows the total number of samples tested for each
Treb	specimen type. The table body shows the number of tested specimens that were positive by the FilmArray.

Organism	Urine n = 146	Urethral/cervical swab n=31	Rectal swab n=43	Oral swab n=60	Ulcer swab n = 15	Total n = 295
Chlamydia trachomatis	23	5	10	I	0	39
Neisseria gonorrhoeae	9	I	6	4	0	20
Treponema pallidum	2	0	2	2	5	11
Trichomonas vaginalis	5	3	0	I.	0	9
HSVI or HSV2	5	I	2	1	I.	10
Mycoplasma genitalium	5	I	I	I.	0	8
Ureaplasma urealyticum	9	9	10	8	0	36
Haemophilus ducreyi	0	0	0	0	0	0
Total	58	20	31	18	6	133

Int. J. STD AIDS 27: 1275-1282; 2016

APMIS 123: 879-886

© 2015 APMIS. Published by John Wiley & Sons Ltd. DOI 10.1111/apm.12430

CAUTION III

Evaluation of the new AmpliSens multiplex real-time PCR assay for simultaneous detection of

Neisseria gonorrhoeae, Chlamydia trachomatis,

Mycoplasma genitalium, and Trichomonas vaginalis

In this study, we performed an evaluation of the new CE-marked multiplex real-time AmpliSens N.gonorrhoeae/ C.trachomatis/M.genitalium/T.vaginalis-MULTIPRIME-FRT PCR assay compared to APTIMA tests, i.e., APTIMA COMBO 2 assay, APTIMA *Trichomonas vaginalis* assay (FDA-approved), and two different APTIMA *Mycoplasma genitalium* assays (research use only; one of them only used for discrepancy analysis). Vaginal swabs (n = 209) and first-void urine (FVU) specimens from females (n = 498) and males (n = 554), consecutive attendees (n = 1261) at a dermatovenerological clinic in Sweden, were examined. The sensitivity of the AmpliSens PCR assay for detection of *C. trachomatis* (6.3% prevalence), *M. genitalium* (5.7% prevalence), *N. gonorrhoeae* (0.3% prevalence), and *T. vaginalis* (0.08% prevalence) was 97.5% (95% confidence interval (CI): 91.2–99.6%), 81.9% (95% CI: 70.7–89.7%), 100% (95% CI: 40.2–100%) and 100% (95% CI: 16.5–100%), respectively. The specificity of the AmpliSens PCR assay was 100% (95% CI: 99.6–100%) for all agents. The analytical sensitivity and specificity for *N. gonorrhoeae* detection was excellent, i.e., 55 international gonococcal strains detected and 135 isolates of 13 non-gonococcal Neisseria species were negative. In conclusion, the multiplex real-time AmpliSens N.gonorrhoeae/C.trachomatis/M.genitalium/T.vaginalis-MULTIPRIME-FRT PCR assay demonstrated high sensitivity and excellent specificity for *M. genitalium* T.vaginalis-MULTIPRIME-FRT PCR assay demonstrated high sensitivity and excellent specificity for *M. genitalium* detection.

Key words: Sexually transmitted infections; AmpliSens; APTIMA COMBO 2 assay; APTIMA Trichomonas vaginalis assay: APTIMA Mycoplasma genitalium assay.

DISCREPANCY PREPONDERANCE

Table 2. True positive and negative results and the results obtained using the AmpliSens multiplex real-time PCR assay, divided into specimen type

True results ¹	AmpliSens result	No. of samples			
		Chlamydia trachomatis	Neisseria gonorrhoeae	Mycoplasma genitalium	Trichomonas vaginalis
Vaginal samples					
+	+	12	0	13	0
_	_	197	209	192	209
+	_	0	0	4	0
_	+	0	0	0	0
Total		209	209	209	209
FVU, females					
+	+	28	2	22	1
_	_	469	496	472	497
+	_	1	0	<u> </u>	0
_	+	0	0	0	0
Total		498	498	498	498
FVU, males					
+	+	38	2	24	0
_	_	515	552	525	554
+	_	1	0	5	0
_	+	0	0	0	0
Total		554	554	554	554
Overall results					
+	+	78	4	59	1
_	_	1181	1257	1189	1260
+	_	2	0	13	0
_	+	0	0	0	0
Total		1261	1261	1261	1261

APMIS 123: 879-886; 2015

PERFORMANCE INDICES

	Number of specimens Sensitivity		vity	Specif	icity	Predictive value (%)				
Diagnostic method and specimen	True positive	False positive	False negative	True negative	%	95% CI	%	95% CI	Positive	Negative
	Infected p	atient statu	s algorithm							
Culture	12	0	0	286	100	69.9-100	100	98.3-100	100	100
PCR - Urethral swab	11	13	1	273	91.7	59.8-99.6	95.5	92.2-97.5	45.8	99.6
PCR - Urine	11	9	1	277	91.7	59.8-99.6	96.9	93.9-98.5	55.0	99.6
ATV - Urethral swab	11	38	1	248	91.7	59.8-99.6	86.7	82.1-90.3	22.5	99.6
ATV - Urine	11	23	1	263	91.7	59.8-99.6	91.9	88.0-94.7	32.1	99.6
	Molecular	resolved al	gorithm							
Culture	12	0	30	256	28.6	16.2-44.8	100	98.2-100	100	89.4
PCR - Urethral swab	23	0	19	256	54.8	38.8-69.8	100	98.2-100	100	93.1
PCR - Urine	20	0	22	256	47.6	32.3-63.4	100	98.2-100	100	92.0
ATV - Urethral swab	40	9	2	247	95.2	82.6-99.2	96.5	93.2-98.3	81.7	99.2
ATV - Urine	31	4	11	252	73.8	57.7-85.6	98.4	95.8-99.5	88.6	95.8

Am. J. Obstet. Gynecol. 200: 188.e1-188.e7; 2009 (adapted)

In vitro CHALLENGE C. trachomatis

Elementary Bodies	TMA Res	PCR Result	
	Light Units (x1000) Interpretati		
200	1217	detected	detected
20	1111	detected	detected
2	1062	detected	not detected
0.2	878	detected	not detected
0.02	288	detected	not tested
0.002	12	not detected	not tested
0.0002	14	not detected	not tested
0.00002	13	not detected	not tested

J. Med. Microbiol. 54: 357-360; 2005

I-Clicker Real Question 5

I-CLICKER REAL QUESTION 5

Does your laboratory test for organisms such as *Mycoplasma hominis* and *Ureaplasma urealyticum*?

- A. Yes, routinely
- B. Yes, but we do not get requests for these very often.
- C. No, we do not offer this testing.
- D. Sort of; this is a send-out test.

Mycoplasmataceae PATHOGENICITY

	Causalit	ty by:	Comments
Disease	U. urealyticum	M. hominis	Comments
NGU	+++	-	Ureaplasma proportion unknown
Prostatitis	++	-	no evidence for chronic prostatitis
Epididymitis	+++	-	particularly in HIV-positive
Urinary calculi	++	-	largely animal studies
Pyelonephritis	-	+++	acute cases and exacerbations
Reiter's disease	+	-	more Ureaplasma data needed
Involuntary infertility	+	-	role in sperm motility

Mandell Principles and Practice of Infectious Diseases, 5th edition 55

Mycoplasmataceae PATHOGENICITY

	Causalit	ty by:	Comments
Disease	U. urealyticum M. hominis		COMMENTS
Low birth weight	-	-	causal relation unproved
Chorioamnionitis	++	-	quoted as "few cases"
Repeated stillbirth/ spontaneous abortion	-	-	causal relation unproved
Involuntary infertility	+	-	also role in sperm motility
Postpartum fever	+	+++	M. hominis major cause
Postabortal fever	-	+++	M. hominis proportion unknown
PID	-	++	probably small proportion
Vaginitis/vaginosis	-	-	<i>M. hominis</i> association with vaginosis
Cervicitis	-	-	NONE
Bartholin abscess	-	-	M. hominis involvement doubtful

Mandell Principles and Practice of Infectious Diseases, 5th edition ₅₆

Diseases Characterized by Urethritis and Cervicitis

Urethritis

T. vaginalis can cause NGU in heterosexual men, but the prevalence varies substantially by region of the United States and within specific subpopulations. In some instances, NGU can be acquired by fellatio (i.e., oral penile contact), sometimes because of specific pathogens such as HSV, Epstein Barr Virus, and adenovirus (476); data supporting other Mycoplasma species and Ureaplasma as etiologic agents are inconsistent. Diagnostic and treatment procedures for these organisms are reserved for situations in which these infections are suspected (e.g., contact with trichomoniasis, urethral lesions, or severe dysuria and meatitis, which might suggest genital herpes) or when NGU is not responsive to recommended therapy. Enteric bacteria have been identified as an uncommon cause of NGU and might be associated with insertive anal intercourse (476). The importance of NGU not caused by defined pathogens is uncertain; neither complications (e.g., urethral stricture and epididymitis) nor adverse outcomes in sex partners have been identified in these cases.

<u>Cervicitis</u>

C. trachomatis N. gonorrhoeae T. vaginalis M. genitalium (persistent)

Sexually Transmitted Diseases Treatment Guidelines, 2015

PELVIC INFLAMMATORY DISEASE

Upper female genital tract inflammatory disorders

- EndometritisTubo-ovarian abscessSalpingitisPelvic peritonitis
- N. gonorrhoeae, C. trachomatis many cases
- Vaginal organisms (G. vaginalis, anaerobes, enteric GNR, H. influenzae, S. agalactiae)
- Some associations with *M. hominis*, *U. urealyticum*, *M. genitalium*

Sexually Transmitted Diseases Treatment Guidelines, 2015

PELVIC INFLAMMATORY DISEASE

• Most-specific diagnostic criteria:

Histopathologic evidence of endometritis Thickened, fluid-filled tubes (MRI, sonography) Laparoscopic findings consistent with PID

Supplemental findings include:

C. trachomatis, N. gonorrhoeae cervical infection Abnormal cervical mucopurulent discharge Increased leukocytes in vaginal fluid Elevated C-reactive protein

59

Sexually Transmitted Diseases Treatment Guidelines, 2015

PARTICIPANTS: 19% 2;81% 3

Table 4. Results for specimens (by type) tested by the FilmArray STI panel. Two hundred and ninety-five specimens from 190 subjects were selected for testing on the FilmArray device. The table header shows the total number of samples tested for each specimen type. The table body shows the number of tested specimens that were positive by the FilmArray.

Organism	Urine n = 146	Urethral/cervical swab n=31	Rectal swab n=43	Oral swab n=60	Ulcer swab n=15	Total n = 295
Chlamydia trachomatis	23	5	10	I	0	39
Neisseria gonorrhoeae	9	I	6	4	0	20
Treponema pallidum	2	0	2	2	5	11
Trichomonas vaginalis	5	3	0	I.	0	9
HSVI or HSV2	5	I	2	I.	I.	10
Mycoplasma genitalium	5	I	I	I.	0	8
Ureaplasma urealyticum	9	9	10	8	0	36
Haemophilus ducreyi	0	0	0	0	0	0
Total	58	20	31	18	6	133

Int. J. STD AIDS 27: 1275-1282; 2016

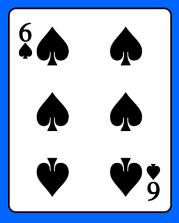

PARTICIPANTS: 304 9;435 3

Table 1 Comparison of results between multiplex polymerase chain reaction (PCR) and monoplex PCR (n = 739)


Target pathogen	Monoplex PCR	Multiplex	PCR
		Positive	Negative
Chlamydia trachomatis	Positive	40	0
	Negative	0	699
Neisseria gonorrhoeae	Positive	32	0
	Negative	0	707
Mycoplasma genitalium	Positive	2	0
	Negative	0	737
Ureaplasma urealyticum	Positive	157	0
	Negative	0	582
Mycoplasma hominis	Positive	82	0
	Negative	0	657
Trichomonas vaginalis	Positive	7	0
	Negative	0	732

21.2% detection from female26.2% detection from male urine

J. Infect. Chemother. 18: 494-500; 2012

I-Clicker Real Question 6

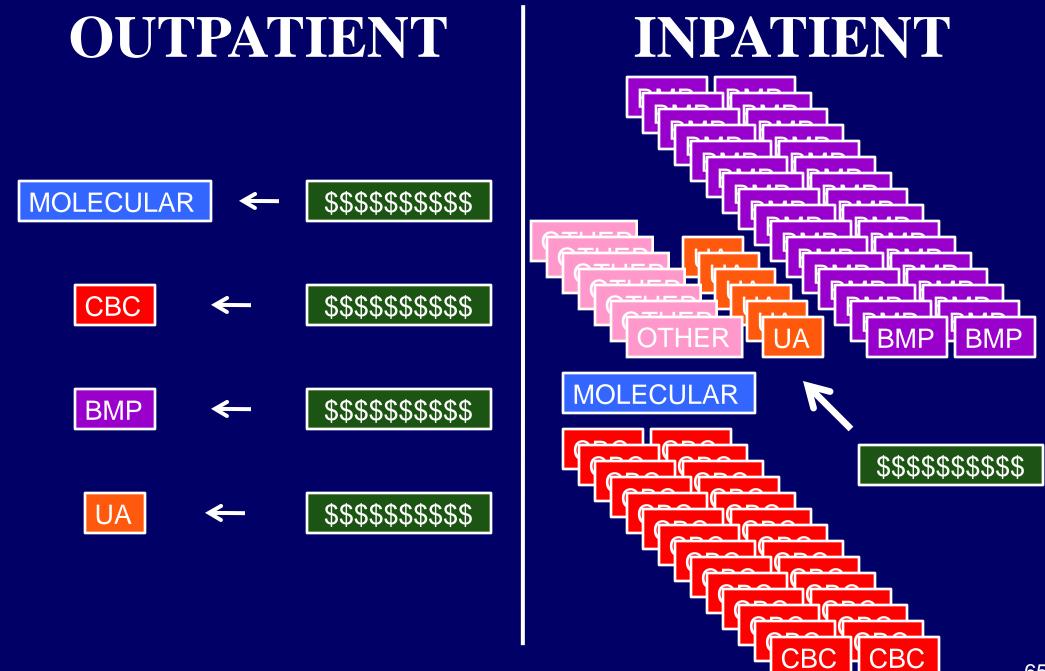
I-CLICKER REAL QUESTION 6

If you are a laboratory that performs laboratory-modified or developed testing, how has reimbursement been?

A. Better than I thought it would be

B. About as expected

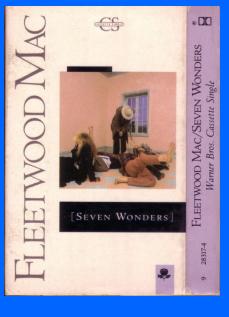
C. My boss calls me into the office weekly; I get yelled at.


D. I need a crash course on this.

Conget Second Annual (Second Annual Annua	
	Automat (Ban.)
Unarred spreadulated	tantin ter termenten
Termit het houses	at the later she
Tonstown B / B 7-0 10 10 10 2 April Anti Amar Timpter	
A 1997 PROPERTY AND A DESCRIPTION OF A D	
C	
2	
×	
·	
2	
26 C	
2	
X	
28.	
N	
Author Seets	- W1

COST/REIMBURSEMENT

Method	Microscopy	Molecular
Reagent co\$t	\$0.54	\$11.81
Direct co\$t (labor)	\$3.81	\$17.84
Reimbur\$ement	\$5.96	\$51.25


No additional capital No additional specimen collection No additional training

COST/REIMBURSEMENT

Method	Microscopy	Molecular
Reagent co\$t	\$0.54	\$11.81
Direct co\$t (labor)	\$3.81	\$17.84
Reimbur ^{\$} ement	\$5.96	~\$40.00

No additional capital No additional specimen collection No additional training

I-Clicker Real Question 7

I-CLICKER REAL QUESTION 7

Does your laboratory offer testing for diagnosis of bacterial vaginosis? IF SO, what is your primary offering?

A. Yes, our primary offering is wet mount for clue cells.

B. Yes, our mainstay is Nugent score analysis.

C. Yes, our go-to is BD Affirm VP III.

D. Yes, we are trailblazing nucleic acid amplification testing.

E. No, nothing exists within our testing menu.

"Your competitors have molecular tests for women's health; you bring this in and we'll order it."

BV Panel

Bacterial vaginosis (several targets)

Candida Panel

Yeast

Candida albicans, Candida krusei, Candida glabrata

Vaginitis Panel

Bacterial vaginosis (several targets) Yeast

Candida albicans, Candida krusei, Candida glabrata Trichomonas vaginalis

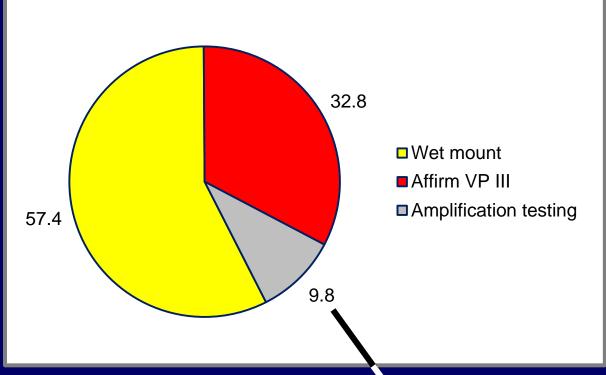
Mycoplasma/Ureaplasma

Mycoplasma / Ureaplasma

M. hominis, M. genitalium, U. urealyticum/parvum

Complete Panel

Bacterial vaginosis (several targets) Yeast


Candida albicans, Candida krusei, Candida glabrata Trichomonas vaginalis Mycoplasma / Ureaplasma M. hominis, M. genitalium, U. urealyticum/parvum

MODALITIES

Bacterial vaginosis Commercial assay (1 result) Yeast Commercial assay (same; 3 results)

Trichomonas vaginalis Commercial assay (same) Mycoplasma / Ureaplasma LDT (3 results)

PERCENTAGE MONTHLY UTILIZATION

BV panel 15/month *Candida* panel 5/month Vaginitis panel 300/month *Mycoplasma / Ureaplasma* 75/month Complete panel 200/month

 $n \sim 6100$ tests

SOME AUTOMATED PLATFORMS

BD MAX™

Candida albicans Candida glabrata Candida krusei Chlamydia trachomatis Neisseria gonorrhoeae Trichomonas vaginalis Streptococcus agalactiae

Healthcare infections

Gastrointestinal

Cepheid

C. trachomatis N. gonorrhoeae T. vaginalis S. agalactiae

Healthcare infections

Genetic markers

Critical infectious diseases

<u>Cobas 4800</u>

Chlamydia trachomatis Neisseria gonorrhoeae HSV 1/2 HPV

Healthcare infections

Oncology markers

<u>BD Viper XTR™</u>

C. trachomatis N. gonorrhoeae T. vaginalis HSV 1/2

SOME AUTOMATED PLATFORMS

<u>Luminex</u>

ARIES® GBS assay ARIES® HSV 1&2 assay MultiCode®-RTx HSV 1&2

Respiratory

Gastrointestinal

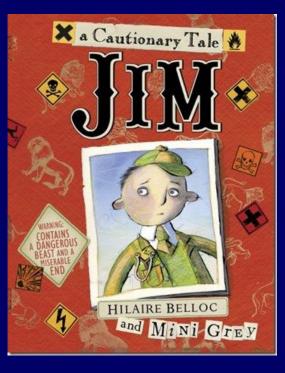
Blood culture

<u>m2000 RealTime</u>

C. trachomatis N. gonorrhoeae HIV-1 HCV HCV genotype II Others (Zika EUA) Cobas 6800/8800 Chlamydia trachomatis

Neisseria gonorrhoeae HIV-1 HCV

Panther system


C. trachomatis N. gonorrhoeae T. vaginalis M. genitalium HSV 1/2 S. agalactiae HPV; 16, 18/45 HIV-1 **HCV**

Others (Zika EUA)

Blood screening

TAKE HOME

- Can be a \$ generator Accurate detection of emerging STI Automation may assist
- Many options available; laboratorymodified and -developed testing may be considered
- Review literature with a critical eye
- Don't develop a test "just because you can"...
 Ask first if you should

