

#### Molecular Diagnosis of Upper Respiratory Viruses

Eric Beck, PhD Alana Sterkel, PhD Tyler Radke, MLS(ASCP) WCLN Spring Meeting 30 April 2019





- Type of tests available
- Cost and Reimbursement Considerations
- Current guidelines and testing approaches
- Studies demonstrating Value of Molecular Respiratory Virus Panels
- Conclusions
- General Discussion



#### Molecular Tests for Diagnosis of Upper Respiratory Tract Infections



#### QUESTION #1

What type of molecular upper respiratory tract infection testing do you offer?

- A. We don't offer any molecular testing
- B. We only offer molecular influenza or influenza/RSV testing
- C. We only offer a large multiplex panel (greater than 5 targets)
- D. We offer an influenza or influenza/RSV panel AND a large multiplex panel
- E. Isn't this workshop usually about susceptibility testing?



# Types of Molecular Tests Available

- CLIA Waived Tests
  - Primarily Flu A/B or Flu A/B+RSV (one exception)
  - Require minimal training
  - Can be performed by non-laboratorians
- Moderate Complexity Tests
  - o Minimal hands on time
  - Run by most laboratory personnel
  - Minimal interpretation required
- High Complexity Tests
  - Require significant manipulation
    - Separate extraction and amplification steps
  - May be significant interpretation required
  - $_{\odot}$  Performed by techs with some specialized training



## **CLIA Waived Tests**

- Abbott ID NOW
  - Formerly know as ALEREi
  - Influenza A/B or RSV
  - Utilizes nasal and nasopharyngeal swabs
  - o Isothermal amplification
  - $_{\circ}$  Flu results in less than 13 minutes
- Cepheid GeneXpert Xpress
  - Influenza A/B or Influenza A/B + RSV
  - Utilizes nasal or nasopharyngeal swabs
  - $\circ$  RT-PCR
  - Results in under 30 minutes
  - $_{\circ}$  2 or 4 random access
    - testing modules







# **CLIA Waived Tests**

- Roche cobas Liat
  - Influenza A/B or Influenza A/B and RSV
  - Nasopharyngeal swab
  - Utilizes RT-PCR
  - Results in approximately 25 minutes
- BioFire FilmArray EZ
  - 17 respiratory viruses (includes subtypes)
  - o 3 respiratory bacteria
  - Nasopharyngeal swab
  - Utilizes nested RT-PCR
  - Results in approximately 1 hour







- Cepheid GeneXpert
  - $_{\odot}$  Influenza A/B and Influenza A/B + RSV
  - Utilizes nasal or nasopharyngeal swabs
  - $\circ$  RT-PCR
  - Results in under 30 minutes
  - 1 to 80 random access testing modules
- Quidel Solana
  - $_{\odot}$  Influenza A/B or RSV/HMPV or
    - Flu A/B, RSV, HMPV
  - Utilizes nasal or nasopharyngeal swabs
  - o Isothermal amplification
  - Results in 45 minutes
  - $_{\circ}$  1 12 sample batches







- Luminex ARIES
  - Influenza A/B + RSV
  - Outilizes nasopharyngeal swabs
  - ∘ RT-PCR
  - Results in under 2 hours
  - Two random access batches
    - of 1 6 samples



- Biofire FilmArray Resp Panel 2
  - 17 respiratory viruses (includes subtypes)
  - o 4 respiratory bacteria
  - Nasopharyngeal swab
  - Utilizes nested RT-PCR
  - Random access
  - Results in approximately 1 hour







- Nanosphere RP Flex
  - 13 respiratory viruses
  - o 3 bacteria (Bordetella sp.)
  - Nasopharyngeal Swab
  - ∘ RT-PCR microarray
  - Results in under 2 hours
  - Random access
  - Flex testing option (only test/bill for subsets of the assay)







- GenMark ePlex
  - 18 respiratory virus (includes subtypes)
  - o 2 bacterial targets
  - Utilizes nasopharyngeal swabs
  - RT-PCR + electrochemical detection
  - Results in under 2 hours
  - Random Access







## High Complexity

- Separate nucleic acid extraction and amplification instruments/processes
- Offer efficiency in high volume settings
- Include small multiplex options
  - Quidel Lyra Parainfluenza
  - o Quidel Lyra Influenza A/B
  - o Quidel Lyra RSV + HMPV
  - Gen-Probe Prodesse ProFlu+
  - Gen-Probe Prodesse ProParaFlu+ (PIV 1, 2, 3)
- Include large multiplex options
  - Luminex NxTag Resp Panel
  - GenMark eSensor Respiratory Virus Panel



#### **Cost and Reimbursement**



### QUESTION #2

What is/was the most important cost that you considered or are considering when bringing in a molecular upper respiratory test?

- A. Cost wasn't a factor
- B. Cost of the testing equipment
- c. Cost of the reagents
- D. Cost to the patients
- E. Increase in reimbursement



# Instrument/Reagent Costs

- Instrument range from "free" to > \$100K
  - Smaller influenza waived instruments may have an option to be placed at no charge
  - High complexity panels may require multiple expensive pieces of equipment
- Reagent costs vary greatly
  - Batch testing reagents for small panels (Quidel Lyra) are among the cheapest
  - Random access test cartridges for large panels are the most expensive
  - Range could be \$20 \$150 per test depending on institutional volumes, contracts, etc.



# **Outpatient Reimbursement/Charges**

- Several CPT codes available for respiratory panels:
  - CPT 87502 Influenza first two types/subtypes
    - CMS reimbursement = \$95.80
  - CPT 87631 Panels containing 3 5 targets
    - CMS reimbursement = \$142.63
  - CPT 87632 Panels contacting 6 11 targets
    - CMS reimbursement = \$237.14
  - CPT 87633 Panels containing 12 25 targets
    - CMS reimbursement = \$463.09
- Institutions often charge 3 5 times the CMS reimbursement rate
- If testing isn't covered patients could face large bills



# Inpatient Reimbursement

- Reimbursed by diagnostic related grouping (DRG)
  - One lump sum payment
  - Cover all aspects of the patients stay
  - DRG 179 Respiratory Infections & Inflammation without Complications and Comorbid Condition
    - In WI Medicare average Payment is \$5,300.74
    - In WI Total Average Payment is \$7,366.55
  - DRG 193 Simple Pneumonia without Complication and Comorbid Conditions
    - In WI Medicare average Payment is \$3,592.56
    - In WI Total Average Payment is \$5,026.18
- Is a \$150 respiratory panel justified if the hospital will only receive \$3500 for the whole stay?



# Additional Considerations

- Palmetto GBA
  - o September 27, 2018
  - Local Medicare Plan Contractor for N. Carolina, S. Carolina, Virginia, and W. Virginia
  - $_{\circ}$  Panels containing 3 5 targets:
    - Will be covered for urgent care, ED, or inpatients
    - Will be covered in other settings if ordered by ID docs
  - $_{\circ}$  Panels containing 6 11 or 12 25 targets:
    - Will not be covered
  - Large panels are deemed not 'reasonable and necessary'
  - Doesn't effect WI yet, but need to keep eyes open in case other private payors follow suit



#### Can Current Clinical Practice Guidelines Help Determine Who, When, and How to Test?



### QUESTION #3

Do you have institutional restrictions in place on what patients can be tested with molecular assays?

- A. We don't have any restrictions
- B. We restrict the use of large (>5 target) molecular panels to inpatients
- C. We restrict the use of large molecular panels to inpatients, but small panels (e.g. influenza A/B+RSV) have no restrictions
- D. We restrict all molecular testing to inpatients or subsets of inpatients



# IDSA Seasonal Flu Guidelines -2018

- In outpatients test for influenza if:
  - It will alter clinical management
- In inpatients test for influenza if the patient has:

   respiratory symptoms requiring admission
   acute or worsening cardiopulmonary disease
  - $_{\rm O}$  immunocompromised patients with respiratory symptoms
  - patients who develop respiratory symptoms during admission
- Rapid molecular tests are favored over antigen tests particularly for inpatient use
- Large multiplex panels are reasonable for:

   Hospitalized immunocompromised patients
   Hospitalized patients whose care may be influenced



# AAP Bronchiolitis Guidelines - 2014

- AAP Guidelines for Bronchiolitis 2014:
  - Test infants receiving monthly RSV prophylaxis in the event they are hospitalized with bronchiolitis

 Apart from that setting routine RSV testing is not recommended



# **Possible Testing Approaches**

- Possible testing options include:
- No algorithm:
  - $_{\rm O}$  Any test can be ordered at provider discretion
- Influenza reflex to Comprehensive Panel
  - Influenza testing ordered initially
  - Comprehensive panel if influenza negative
- Restrict Comprehensive Panels to Certain Patient Subsets. Options may include:
  - $\circ$  Inpatients
  - Intensive Care Units
  - Immunocompromised



#### What are the Clinical/Administrative Benefits of Molecular Respiratory Virus Panels



## Rogers et al, 2014

- PURPOSE Does a rapid respiratory panel result in outcome differences in hospitalized children
- Retrospective look at inpatients > 3 months old
- Season 1 Testing Included:
  - Included 365 Patients
  - $_{\odot}$  Batched PCR for Flu A, B, RSV
  - Additional batched testing for HPIV-1, -2, -3, and HMPV offered
- Season 2 Testing Included:
  - Included 771 patients
  - Biofire Respiratory Panel



# Rogers et al, 2014 Cont'd

- Large multiplex panels increased positivity rate  $\circ$  59.8% positive  $\rightarrow$  77.9% positive (p < 0.001)
- Rapid molecular test decreased TAT

   TAT of 18.7 hours → 6.4 hours (p < 0.001)</li>
   Patients receiving results while in ED 13.4% → 51.6%
- Test cost increased, but overall hospital cost decreased by \$178 per patient

Lower duration of antibiotic therapy (decrease 0.4 DOTs)

- No decrease observed in:
  - $_{\circ}$  % of patients receiving ABx
  - $_{\rm O}$  Length of Stay

• Rogers BB, et al. 2014. Impact of a rapid respiratory panel test on patient outcomes. Arch Path Lab Med. 139(5): 636-41.



### Chu et al, 2015

- GOAL Evaluate use of rapid influenza tests in hospitalized adult patients across flu seasons
- Retrospective look at ED patients > 18 years old
- Season 1 Testing Included:
   Included 175 Patients
   LDT for influenza
- Season 2 Testing Included:
  - Included 175 patients
  - $_{\odot}$  Simplexa Flu A/B & RSV



# Chu et al, 2015 Cont'd

- Use of rapid molecular test significantly decreased TAT to positive results
  - $_{\odot}$  TAT of 25.2 hours  $\rightarrow$  1.7 hours
- Oseltamivir DOTs decreased by 1 day in negative patients
- Lower rates of antibiotic therapy (76% vs. 63%)
- No decrease observed in:
  - ICU admissions
  - o Mortality
  - Receipt of ABx at discharge

 Chu HY, et al. 2015. Impact of rapid influenza PCR testing on hospitalization and antiviral use: A retrospective cohort study. J Med Virol. 87(12): 2021-26.



## Rappo et al, 2016

- GOAL Compare outcomes of conventional methods to multiplex PCR across flu seasons
- Retrospective look at ED patients > 18 years old
- Season 1 Testing Included:
  - Included 198 Patients
  - $_{\odot}$  RIDTs for RSV and Influenza
  - High Complexity Influenza/RSV PCR
  - Luminex Respiratory Panel
  - Virus Culture/DFA
- Season 2 Testing Included:
  - Included 139 patients
  - Biofire FilmArray



# Rappo et al, 2016 Cont'd

- Use of rapid molecular test significantly decreased TAT to positive results
- Decreased TAT resulted in significant:
  - $_{\circ}$  Lower admission rates
  - $_{\odot}$  Decreases in length of stay
  - $_{\odot}$  Lower duration of antibiotic therapy
  - Decreases in utilization of chest x-rays

• Rappo U, et al. 2016. Impact of early detection of respiratory viruses by multiplex PCR assay on clinical outcomes in adult patients. *J Clin Microbiol.* **54(8)**: 2096-2103.



# Rogan et al, 2017

- GOAL Would a rapid respiratory viral result change your management
- In 64% of ED patients tested the MD would base management on that decision if they had the result
- Primary change associated with decreased testing

• Rogan DT, et al. 2017. Impact of rapid molecular respiratory virus testing on real-time decision making in a pediatric emergency department. *J Mol Diagn.* **19(3):** 460-7.

| Management<br>decision | RSV, % (95% CI)              |                      |        | Influenza, % (95% CI) |                              |            |  |
|------------------------|------------------------------|----------------------|--------|-----------------------|------------------------------|------------|--|
|                        | Pos. (+)<br>( <i>n</i> = 40) | Neg. (–)<br>(n = 40) | P1     | Pos. (+)<br>(n = 40)  | Neg. (–)<br>( <i>n</i> = 40) | <b>P</b> 2 |  |
| ED diagnostics         |                              |                      |        |                       |                              |            |  |
| Chest X-ray            | 28 (13-42)                   | 53 (36–69)           | 0.001  | 35 (20–50)            | 53 (36–69)                   | 0.007      |  |
| UA screen              | 23 (9–36)                    | 35 (20–50)           | 0.023  | 15 (3–27)             | 40 (24–56)                   | 0.001      |  |
| Blood draw             | 30 (15-45)                   | 50 (34–66)           | 0.003  | 28 (13-42)            | 53 (36–69)                   | 0.001      |  |
| Admission status       |                              |                      |        |                       |                              |            |  |
| No change              | 80 (67–93)                   | 88 (77–98)           | 0.083  | 90 (80–100)           | 90 (80–100)                  | >0.999     |  |
| Discharge to admit     | 8 (-1 to 16)                 | 5 (-2 to 12)         | 0.570  | 3 (-3 to 8)           | 5 (-2 to 12)                 | 0.324      |  |
| Admit to discharge     | 5 (-2 to 12)                 | 5 (-2 to 12)         | >0.999 | 0 (0–0)               | 5 (-2 to 12)                 | 0.160      |  |
| Total change           | 13 (2–23)                    | 10 (0–20)            | 0.711  | 3 (-3 to 8)           | 10 (0–20)                    | 0.083      |  |
| Antimicrobial use      |                              |                      |        |                       |                              |            |  |
| Antibiotics            | 18 (5–30)                    | 15 (3–27)            | 0.744  | 18 (5–30)             | 25 (11–39)                   | 0.262      |  |
| Oseltamivir            |                              |                      |        | 85 (73–97)            | 10 (0–20)                    | <0.001     |  |



#### Wabe et al, 2019

- GOAL Compare outcomes of sending out a large panel vs. rapid on-site testing with a small panel
- Retrospective look at ED patients > 18 years old
- Season 1 Testing Included:
  - Included 953 Patients
  - Sendout large respiratory virus panel
- Season 2 Testing Included:
  - Included 1,209 patients
  - On-site testing with rapid Flu A/B & RSV assay (Cepheid)



# Wabe et al, 2019 Cont'd

 Use of rapid molecular test significantly decreased TAT to positive results

 $_{\circ}$  27.4 hours versus 2.3 hours

- 18.9% patients discharged before final result decreased to 2.2% of patients
- LOS for positive patients decreased by 21 hours despite fewer targets being detected
- Significant decrease in additional tests:
  - $_{\circ}$  Blood culture
  - Respiratory culture
  - $_{\rm O}$  Viral serology
- Wabe N, et al. 2019. Impact of rapid molecular diagnostic testing of respiratory viruses on outcomes of adults hospitalized with respiratory illness: a multicenter quasi-experimental study. *J Clin Microbiol.* **57(4).**



### Green et al, 2016

- GOAL Do large molecular respiratory virus panels decrease outpatient ABx use
- Evaluated Filmarray results on 295 outpatients from a large VA center
  - 105 positive for influenza
  - 109 positive for non-influenza
  - 81 negative for all targets
- Significant decrease in ABx for Flu positive patients
- No difference in ABx rates between negative and non-influenza positive groups (p = 1.0)
- In outpatient settings, large panels may not be relevant
- Green DA, et al. 2016. Clinical utility of on-demand multiplex respiratory pathogen testing among adult outpatients. J Clin Microbiol. 54(12): 2950-55.



# A Word of Caution on Specificity

- From PI of an FDA approved respiratory virus panel
- Testing of 1117
   Prospective
   Specimens

| Organism                     | Sensitivity        |       | 95% CI       | Specificity              |       | 95% CI       |
|------------------------------|--------------------|-------|--------------|--------------------------|-------|--------------|
| Adenovirus                   | 24/27ª             | 88.9% | 70.8 - 97.7% | 812/826 <sup>b</sup>     | 98.3% | 97.2 - 99.1% |
| Influenza A                  | 9/10               | 90.0% | 55.5 - 99.8% | 841/843 <sup>c</sup>     | 99.8% | 99.2 -100%   |
| Influenza A H1               | 0/0                | n/a   | n/a          | 853/853                  | 100%  | 99.6 - 100%  |
| Influenza A H3               | 0/0                | n/a   | n/a          | 853/853                  | 100%  | 99.6 - 100%  |
| Influenza A H1-2009          | 8/9                | 88.9% | 51.8 - 99.7% | 841/844 <sup>c</sup>     | 99.6% | 99.0 - 99.9% |
| Influenza B                  | 0/0                | n/a   | n/a          | 853/853                  | 100%  | 99.6 - 100%  |
| Parainfluenza Virus 1        | 1/1                | 100%  | n/a          | 1115/1116 <sup>d</sup>   | 99.9% | 99.5 – 100%  |
| Parainfluenza Virus 2        | 7/8 <sup>e,g</sup> | 87.4% | 47.4 - 99.7% | 1107/1109 <sup>f,g</sup> | 99.8% | 99.4 - 100%  |
| Parainfluenza Virus 3        | 23/24 <sup>h</sup> | 95.8% | 78.9 – 99.9% | 819/829 <sup>i</sup>     | 98.8% | 97.8 - 99.4% |
| Parainfluenza Virus 4        | 9/9                | 100%  | 66.4 – 100%  | 1107/1108 <sup>j</sup>   | 99.9% | 99.5 – 100%  |
| Respiratory Syncytial Virus  | 52/52              | 100%  | 93.2 - 100%  | 714/801 <sup>k</sup>     | 89.1% | 86.8 - 91.2% |
| Organism                     | PPA                |       | 95% CI       | NPA                      |       | 95% CI       |
| Coronavirus 229E             | 12/12              | 100%  | 73.5 - 100%  | 1103/1105 <sup>i</sup>   | 99.8% | 99.4 - 100%  |
| Coronavirus HKU1             | 23/24              | 95.8% | 78.9 - 99.9% | 827/829 <sup>m</sup>     | 99.8% | 99.1 - 100%  |
| Coronavirus NL63             | 23/24              | 95.8% | 78.9 - 99.9% | 829/829                  | 100%  | 99.6 - 100%  |
| Coronavirus OC43             | 14/14              | 100%  | 76.8 - 100%  | 1098/1103 <sup>n,o</sup> | 99.6% | 99.0 - 99.9% |
| Human Metapneumovirus        | 88/93              | 94.6% | 87.9 - 98.2% | 754/760                  | 99.2% | 98.3 - 99.7% |
| Human Rhinovirus/Enterovirus | 190/205            | 92.7% | 88.2 - 95.8% | 613/648                  | 94.6% | 92.6 - 96.2% |
| Bordetella pertussis         | 6/6                | 100%  | 54.1 - 100%  | 1110/1111                | 99.9% | 99.5 - 100%  |
| Chlamydophila pneumoniae     | 1/1                | 100%  | n/a          | 1116/1116                | 100%  | 99.7 - 100%  |
| Mycoplasma pneumoniae        | 4/4                | 100%  | 39.8 - 100%  | 1113/1113                | 100%  | 99.7 - 100%  |

- 494/523 (94.4%) true positives detected
- 51 false positives (after discrepant analysis)
- Approximately 1 out of 11 positive results is wrong





- There is a nice commentary in the most recent Journal of Clinical Microbiology
- Kuypers J, 2019. Impact of rapid molecular detection of respiratory viruses on clinical outcomes and patient management. *J Clin Microbiol.* 57(4).



#### **Conclusions about Utility of Molecular Respiratory Virus Testing**



## **Pros of Molecular Panels**

- Many require minimal hands on time
- Can be completed in less than an hour
- Options exist for either:
  - Small targeted panels (e.g. influenza A/B)
  - Large broad panels (e.g. BioFire FilmArray)
- Most performed on instruments with potential to add other large panels



# **Cons of Molecular Panels**

- Cost-assays and instrumentation can be expensive (can cost up to \$150/test)
- Specimen type limitations
- May contain analytes with very low prevalence
- Interpretation of positive results
  - Rhinovirus can persist for up to a month
    - Current or previous infection
- Implications are often ignored
  - ABx not discontinued
  - Patients not started on therapy
- Consider your specificity



# **Final Thoughts**

- Molecular upper respiratory panels demonstrate significant clinical benefits
  - Rapid TAT appears to be of significant importance
  - Larger panels may help in some settings
- These benefits may not be realized without foresight:
  - $_{\rm O}$  Match the test to the setting
  - Consider implementing unpopular restrictions
  - $_{\odot}$  Determine how the increased test cost is justifiable



# **Thanks for Listening!!**



# Additional Discussion Questions

- Have you validated off label specimens?
- How do labs handle post-mortem specimens? Are they tested?
- Implementation of CLIA Waived molecular diagnostics:
  - Have you been asked by providers to implement in clinics?
  - o Has anyone actually done it?
  - $_{\rm O}$  Who does the testing?
- Do you offer subsets of a large molecular panel or do providers have the ability to choose specific analytes?
- Has anyone seen reimbursement concerns?