Everything You Need to Consider When Considering Automation of Microbiology

Nathan A Ledeboer Professor and Vice Chair Department of Pathology and Laboratory Medicine Medical College of Wisconsin

Medical Director, Microbiology and Molecular Pathology Wisconsin Diagnostic Laboratories and Froedtert Health

Medical Director, Preanalytics and Reference Services Wisconsin Diagnostic Laboratories Milwaukee, WI

WHY WE AUTOMATE

Trends to Automation?

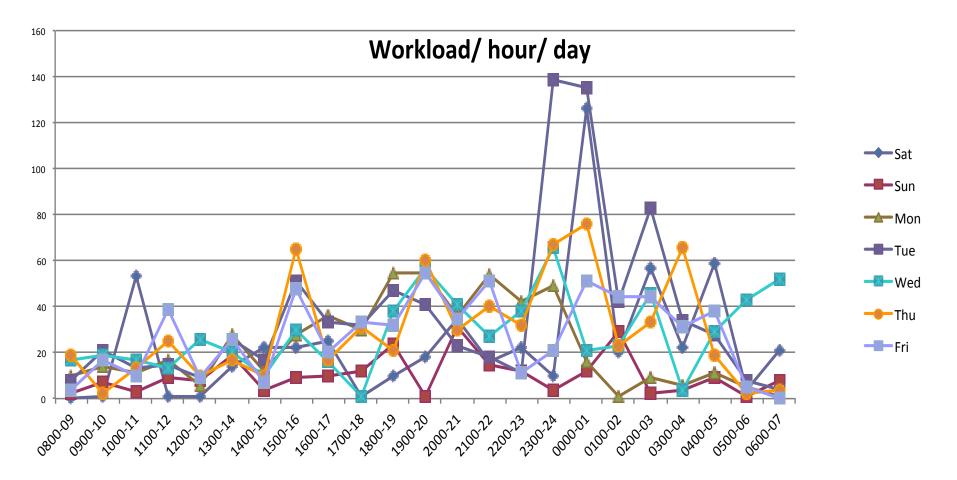
- The Industry is Changing
 - Specimens increasing on average 10-15% per year
 - Laboratory consolidation
 - Reimbursement
- Workforce
 - Less students choose Medical Technology: reduction of 30-50%
 - Pay for technologists is substandard
- Quality
 - Physicians are demanding more services, in less time
 - Traceability

Manual Processing

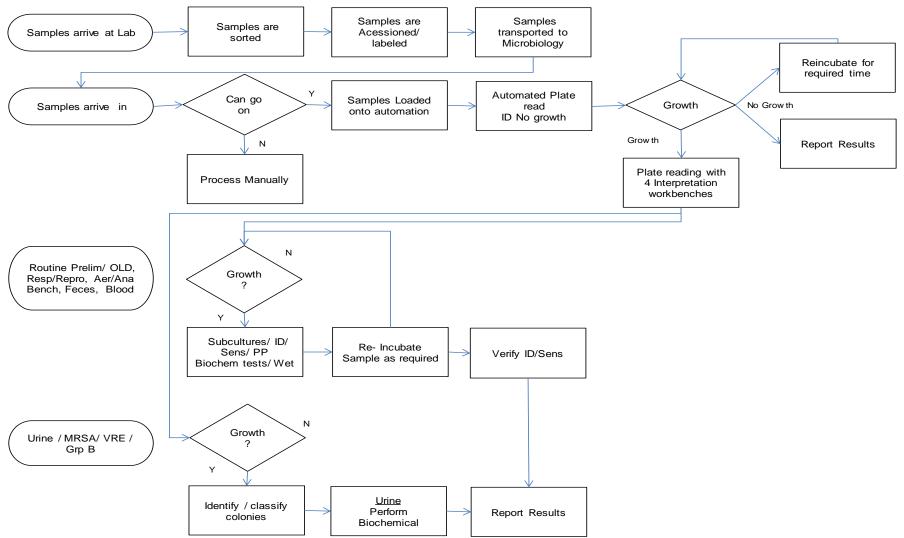
- Microbiology too complex to automate
 - Specimen Diversity
 - Collection Device Diversity
 - Diversity of Techniques
 - Diversity of Media
- The human element
 - Technologists are faster than machines
 - Humans are capable of thinking, machines are not
 - Humans are flexible
- Automation considered too Expensive
- Small volumes
 - Only the large labs can automate

And Don't Forget:

Laboratory Automation Systems


- Specimen inoculation/processing unit
- Incubation system
- High-resolution digital imaging system
- +/- track system for moving plates
- Workstations

Available Models:


- WASPLab
- BD Kiestra[™] TLA

Hourly Workload

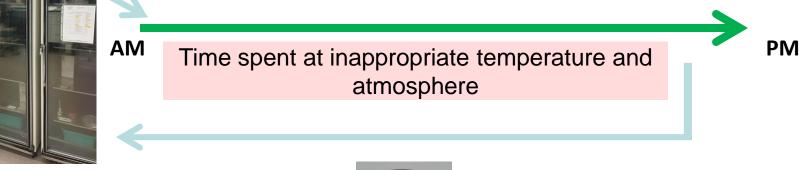
Laboratory Process - Post Automation

Impact on productivity

Productivity Index = #samples / #FTEs worked

Productivity for hours worked	# FTE/d	Productivity Index
Current FTE	22	23.0
Future FTE	15	34.8

Productivity - Increased by 51%


A Traditional Workflow Problem: "Time Out"

Take All Plates Out in AM...

How significant of a problem is this?

We followed >200 blood cultures to find out...

Slide Courtesy of Neil Anderson, MD

Return All Plates in PM...

Results: Time Out

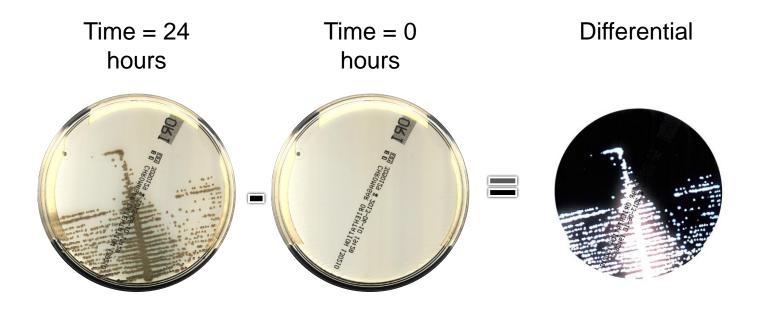
	Day 1	Day 2	Day 3	Day 4
	n=232	n=232	n=147	n=35
Plate age (range)	1h51min-	26h29m-	51h5min-	78h22m-
	25h37min	50h2m	75h17min	96h50m
Cumulative time outside incubator (average)	26m	2h9m	5h48m	9h58m
Cumulative time outside incubator (range)	2m-2h1m	52m-7h20m	3h3m-11h57m	6h22m-18h27m

Plates as young as 26 hours may have spent as much as 7 hours outside of the incubator

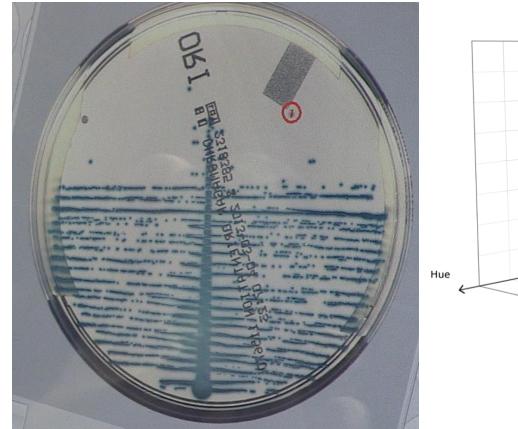
Slide Courtesy of Neil Anderson, MD

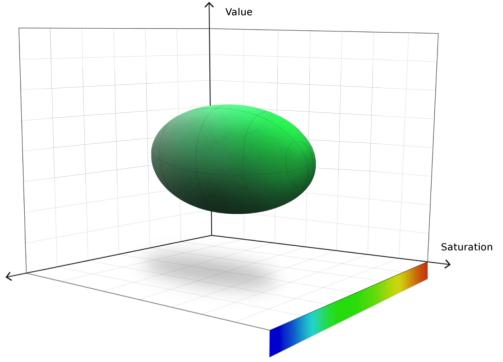
Recovery of Multiple Organisms Enhance

TABLE 2 Differences and percentages of change in the recovery of uropathogens reported in urine cultures pre- and post-TLA^{*a*}


	No. of time reported pe urine cultur	er 1,000		
Organism	Pre-TLA	Post-TLA	% change	P value
Escherichia coli	79.4	101.2	+27	< 0.0001
Klebsiella spp.	22.9	24.0	+5	0.24
Streptococcus agalactiae	22.2	36.7	+66	< 0.0001
Aerococcus urinae	2.2	4.4	+103	< 0.0001
Staphylococcus saprophyticus	1.0	2.3	+126	< 0.0001
Neisseria gonorrhoeae	0.2	1.0	+371	< 0.0001
Actinotignum schaalii	0.1	0.13	+33	0.77
Streptococcus pneumoniae	0.02	0.1	+312	0.27
Alloscardovia omnicolens	0.0	0.06	NA	0.30

^aTLA, total laboratory automation; NA, not applicable.


LainhartW,BurnhamC-AD.2018. Enhanced recovery of fastidious organisms from urine culture in the setting of total laboratory automation.JClinMicrobiol56:e00546-18. https://doi.org/10.1128/JCM.00546-18.


How can we use these images for automation

• Software analysis - Image differentials

The Algorithm

Applying Algorithms to GAS

- Evaluated 250 throat swabs submitted from single center
- Specimens tested by: PCR, BAP, Colorex Strep A
- Compared results of manual read to automated read; compared BAP to chromogenic agar



Table 1. Manual examination of Colorex Strep A Agar after 24 hours incubation with secondary manual review

		Orange Colony				
		Pos	Neg			
CHROMagar at 24 hours (visual)	Pos	55	0			
	Neg	2	193			
		Sensitivity: 55/55+2 = 96.5% Specificity: 193/193+0 = 100				

PPV = 55/55 + 0 = 100% ; NPV = 193/193+2 = 98.9%

Table 2. WASPLab examination of Colorex Strep A agar after 24 hours incubation using CDM software with secondary manual review

		Orange Colony				
		Pos	Neg			
CHROMagar at 24 hours (CDM algorithm)	Pos	57	7			
	Neg	0	186			
		Sensitivity: 57/57 + 0 = 100% Specificity: 186/186 + 7 = 9				

PPV = 57/57 + 7 = 89.1%: NPV = 186/186 + 0 = 100%

Table 3. Comparison of manual examination of BAP versus Colorex Strep A Agar (with secondary manual review)								
		Orange	Orange Colony					
		Pos Neg						
Beta Hemolysis Present on BAP	Pos	45	51					
	Neg	12	142					
		Sensitivity: 45/45 +12 = 78.9%	Specificity: 142/142 + 51 = 73.6%					

What about GBS?

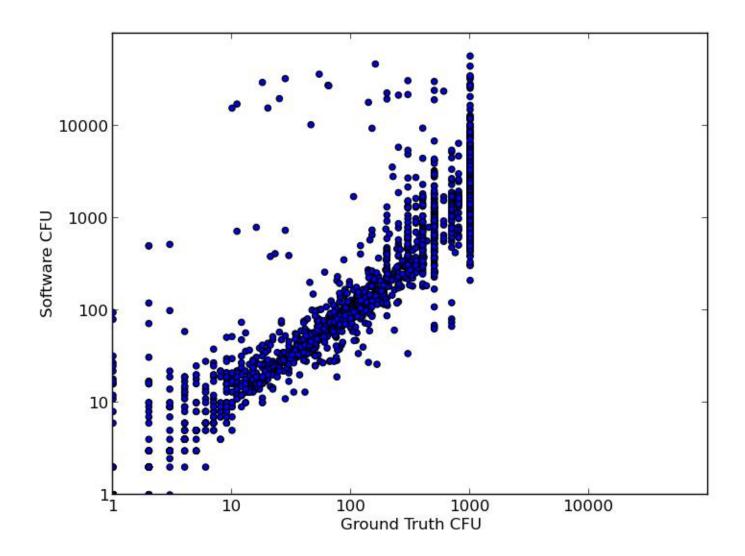
- 254 vaginal/rectal swabs
- All swabs were initially incubated in LIM for 18-24h at 35-37 degrees C
- Compared ChromID GBS to Carrot Broth
 - Equivalent performance
- Compared WASPLab segregartion software to CLS read
- Have subsequently increase n to >4000 specimens enrolled
- Multi-Center Study comparing with CDC method and PCR currently enrolling


CLEB Esus-ot-obsources	

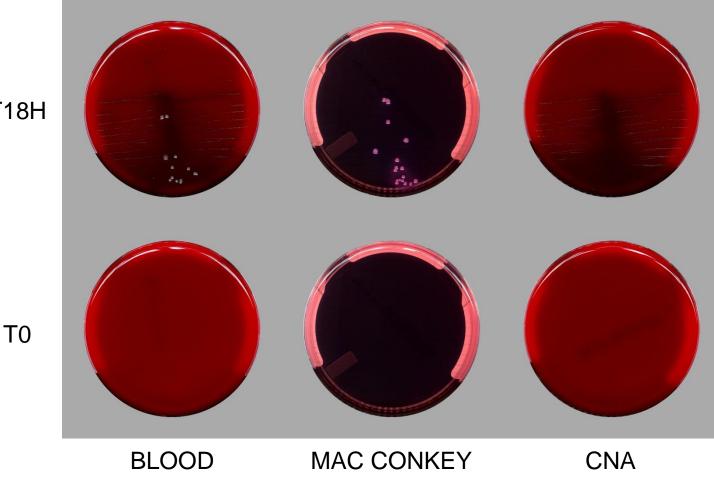
		SS	SW
		Negative	Positive
Visual	Negative	124	32
Exam.	Positive	0	89

Incorporating into the laboratory

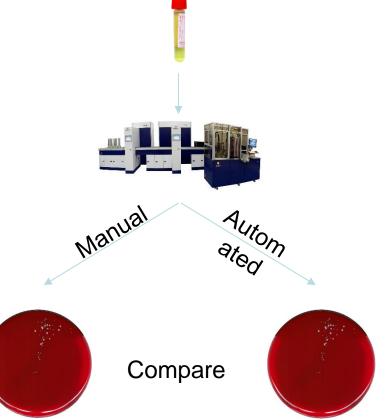
- Negative Specimens
 - Batch viewing 40 images/page
 - Batch report
- Non-negative Specimens
 - Still requires Technologist
 - View on HD monitor
 - Positive vs Matrix or Yeast
 - Standard of care



Savings = \$445,760.27


Can it Quantitate?

Blood Plate Reading

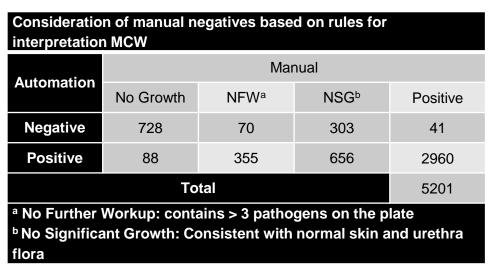

False Positive Example SW POS, human NSG

T18H

Can we use this software to Analyze Urine Using Non-Chromogenic Plates?

- 3 sites
- Specimens (n=13,465)
 - Urines (Plated Blood, MacConkey, CNA)
- Algorithm results
 - POS >10 colonies on any plate
 - Neg ≤ 10 colonies in all 3 agars
- Reference method
 - Manual reading
 - Site specific procedures for results
- Discrepant analysis
 - Images reviewed by supervisor

How well does it work?


Performance of WASPLab [™] digital imaging software compared to manual reading of BAP, MAC and CNA									
	No. of specimens		Result	Performance (% [95% CI]) ^b					
	tested	MP/AP	MN/AN	MN/AP	MP/AN	PPA°	NPA°		
Site 1	5201	2960	1101	1099	41	98.6 (98-99)	50.0 (48-52)		
Site 2	5513	1620	3392	500	1	99.9 (99-99)	87.2 (86-88)		
Site 3	2751	1108	1184	393	66	94.4 (93-96)	75.1 (73-77)		
Total	13465	5688	5677	1992	108	98.1 (97-98)	74.0 (73-75)		

^aMP/AP, manual Pos automation Pos; MN/AN, manual Neg/automation Neg; MN/AP, manual Neg/automation pos; MP/AN, manual pos/automation Neg.

^b Cl, confidence interval.

^cPPA, Positive Percent Agreement; NPA, Negative Percent Agreement

Urines are not all 1s and 0s

Rules ~ 92% of all MN/AP specimens

NEG

- LAB results:
 - POS: Positive ≥10 CFU, Catheter any growth, Urinary clinic any growth
 - NG: No Growth
 - NSG: No Significant Growth ≥ 10 CFU but consistent with Normal skin flora
 - NFW: No Further Workup ≥ 10 CFU, but >3 pathogens (fecal contamination)

Summary of 41 manual positive, automation negative specimens with lab report

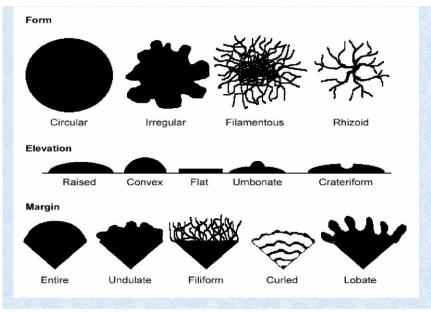
- 6 specimen lab report negative
- 15 specimens (growth) were from catheters <10 cfu
- 5 specimens >10 colonies called at 48 hours
 - 4 GPR
 - 1 S. anginosus
- 12 from Urinary Clinic policy similar to catheters
- 1 unspecified specimen from 16th street clinic (1 of many out patient facilities)
 - Policy states minimum ID on pathogens less than 100,000 CFU/mL
- 1 Pregnant patient
 - Growing GBS reportable
- Only 1 image at 24 hours had >10 colonies after second review (non-lab report)

Evaluation of the 41 manual positive, automation	
negative specimens by source at MCW	

Void	Catheter	Unspecified
12 ^{a,b}	17 ^{c,d,e}	12 ^{b,f}

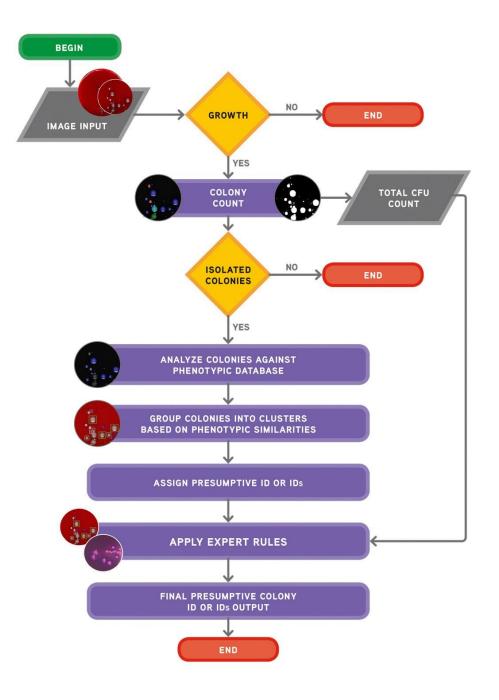
^a 3 specimens were negative for growth by laboratory report

^b 2 specimens were positive after 48 hours


°1 specimen was negative for growth by laboratory report

- ^d 1 specimen was positive after 48 hours
- ^e Policy states min ID for any growth from Catheter

^f 2 specimen was negative for growth by laboratory report


Can AI Identify Organisms, Based on Morphology

Organism Classifications	n	Correct Classification	Percent	Unclassified	Percent	Misclassified	Percent	Correct Gram Classification	Percent
Staphylococcus species	28	24	86%	4	14%	0	0%	28	100%
Candida species	17	16	94%	0	0%	1	6%	17	100%
Streptococcus species	37	24	65%	5	14%	8	22%	37	100%
Enterobacteriacae	69	62	90%	6	9%	1	1%	69	100%
Pseudomonas									
aeruginosa	10	7	70%	3	30%	0	0%	10	100%
Enterococcus species	20	20	100%	0	0%	0	0%	20	100%

Timm and Culbreath, ECCMID 2017

Summary, Where is the Field and Where are We Going?

