

Creation and Use of Antibiograms Raymond P. Podzorski, Ph.D., D(ABMM) Clinical Microbiologist St. Mary's Hospital – Madison Laboratory and Wisconsin Region SSMHealth raymond.podzorski@ssmhealth.com

Objectives

1.Introduce the New CLSI M39-Ed5 Document

2. Highlight Some of the Changes in the M39-Ed5 Document

3. Review The Various Types of Antibiograms in M39-Ed5

4. Discuss in Detail Some of the Enhanced Antibiograms in M39-Ed5

Disclosure

oodors

CHOTONS

Raymond P. Podzorski, Ph.D., D(ABMM)

April 26, 2022

No relevant financial relationships do disclose.

Recommendations M39-Ed5

CLINICAL AND LADORATORY STANDARDS DISTUTUTE

5th Edition

ealt

M39

Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data

This guideline describes methods for recording and analyzing antimicrobial susceptibility test data, consisting of cumulative and ongoing summaries of susceptibility patterns of clinically significant microorganisms.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.

Recommendations M39-A4

January 2014

M39-A4

Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline—Fourth Edition

This document describes methods for recording and analysis of antimicrobial susceptibility test data, consisting of cumulative and ongoing summaries of susceptibility patterns of clinically significant microorganisms.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.

ris document is protected by copyright. ublished On 1/31/2014.

Purpose of M39-Ed5

The primary aim of M39 is to guide the preparation and use of antibiograms by clinicians for selecting the most appropriate antimicrobial agents for empirical therapy for initial infections when definitive antimicrobial susceptibility test (AST) results are not available.

Contents of M39-Ed5

The M39 guideline includes recommendations for:

Data

- Collection
- Storage
- Analysis
- Presentation

Preparation of reports

- Routine and enhanced antibiograms
- Guide selection of empirical antimicrobial therapy

Contents of M39-Ed5

M39 describes:

Methods for recording and analyzing AST data

- Consisting of cumulative and ongoing summaries (antibiograms)
- Susceptibility patterns of clinically significant microorganisms

Overview of Changes to M39-Ed5

- Adding definitions for "cumulative antimicrobial susceptibility test report" and "antibiogram"
- How to extract data from different sources for antibiogram preparation
- Combining results from rapid diagnostics and antimicrobial resistance marker testing with the antibiogram for empirical therapy selection
- Developing antibiograms for multiple facilities
- Describing ways in which antimicrobial stewardship programs may use antibiogram data
- Preparing cumulative susceptibility data for peer-reviewed publications
- Using statistical analysis techniques
- Adding general comment explaining the use of the "^" with intermediate breakpoints for applicable antibiotics known to concentrate in the urine
- Deleting recommendation to list percent intermediate in addition to percent susceptible for penicillin with viridans group streptococci
- Adding a section on epidemiological cutoff values

Overview of Changes M39-Ed5

Document has been rewritten and reorganized with some new material.

CLINICAL AND LABORATORY STANDARDS DISTUTUTE

5th Edition

M39

Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data

This guideline describes methods for recording and analyzing antimicrobial susceptibility test data, consisting of cumulative and ongoing summaries of susceptibility patterns of clinically significant microorganisms.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.

M39-A4

8 Use of Cumulative Antimicrobial Susceptibility Reports

The following sections provide suggestions for educational efforts to facilitate understanding and use of the cumulative antimicrobial susceptibility test data report.

8.1 Use of the Report

The cumulative antimicrobial susceptibility test data report should only be used as a general guide for empirical antimicrobial therapy until such time that specific antimicrobial susceptibility test results for a patient's infecting organism become available. Clinical application of the cumulative antimicrobial susceptibility test data in an initial choice of antimicrobial agents depends on a variety of factors, including the organism, the antimicrobial agent, patient characteristics, site of infection, and the other clinical parameters. Thus, the patient's physician uses the susceptibility data as one, but not the only, criterion for drug choice.

The cumulative antibiogram is increasing in importance as ASPs evolve in health care facilities. Individuals responsible for ASPs and those preparing cumulative antibiograms must work together to ensure these reports are prepared, distributed, and used optimally.

M39-Ed5

Part V. Using the Routine and Enhanced Antibiogram

Using the Antibiogram to Guide Empirical Therapy of Initial Infections

10.1 Percent Susceptibility Threshold to Guide Empirical Antimicrobial Therapy

The routine or enhanced antibiogram can be used as a general guide for empirical antimicrobial therapy selection until definitive antimicrobial susceptibility test results become available. There are limited clinical data that define the %S value needed for optimal coverage for empirical therapy. When specific empirical therapy is selected, antibiogram data should be considered with other factors such as:

Types of Antibiograms

Routine CLSI
Enhanced CLSI

What is a Routine Antibiogram?

Antibiogram prepared in accordance with Chapter 3 in the current CLIS M39-Ed5 document.

Routine Antibiogram

GRAM NEGATIV
Citrobacter freundii
Citrobacter koseri
Enterobacter cloacae cmpl
Escherichia coli
Klebsiella aerogenes*
Klebsiella oxytoca
Klebsiella pneumoniae
Morganella morganii
Proteus mirabilis
Serratia marcescens

GATIVE	N	AMP	AMP/SUL	CEFTRX	CEFEPIME	CIPRO	GENT	MERO	PIP/TAZ	тов	TMP/SMX	NITRO
	76	R	R	87***	100	97	96	100	91	99	88	96
	108	R	•	100	100	100	100	100	100	100	100	90
e cmplx.	115	R	R	85***	96	98	99	100	87	99	93	31
	3,648	66	72	96	99	89	95	100	98	95	84	97
*	58	R	R	88***	100	98	100	98	86	100	100	10
	111	R	67	99	100	99	100	100	99	99	94	85
ae	515	R	88	99	99	97	99	100	97	99	95	36
	38	R	R	97	100	89	95	100	100	97	84	R
	241	90	93	99	100	95	95	100	100	95	93	R
	63	R	R	97***	100	94	100	100	98	94	100	R

*** Use with caution, *Enterobacter spp*., *K. aerogenes*, *C. freundii*, and *S. marcescens* may develop resistance to Ceftriaxone during prolonged therapy as a result of derepression of Amp C β-lactamase

no data

Klebsiella (formally Enterobacter) aerogenes

GRAM NEGATIV

VE							
	N	CIPRO	GENT	тов	PIP/TAZ	CEFPIME	MERO
2	292	91	97	99	94	97	97

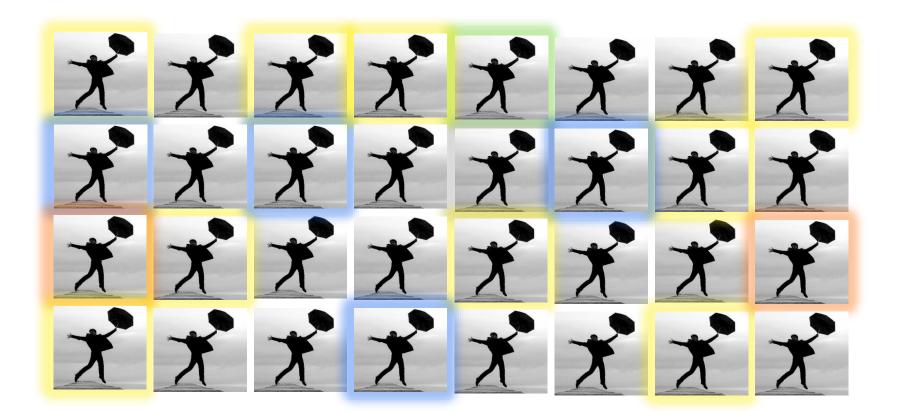
Pseudomonas aeruginosa

What is an Enhanced Antibiogram?

Enhanced antibiograms are cumulative antimicrobial susceptibility test data in which the data have been extracted, stratified, and displayed to answer specific clinical questions or to help guide empirical abx therapy in select patient populations or infection types.

What Are Some Enhanced Antibiograms?

- 1. Stratified Antibiogram
- 2. Cross-Table Combination Antibiogram
- 3. Weighted-Incidence Syndromic Combination Antibiogram WISCA



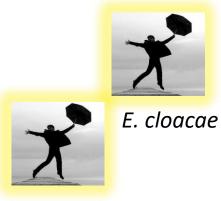
What is a Stratified Antibiogram?

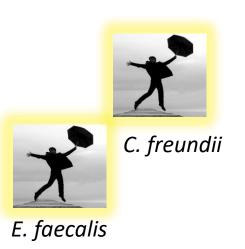
Antibiogram that analyzes a specific subset of bacterial isolates, e.g., those from specific location (ED, ICU), those from a specific source (urine, blood), those from a specific age of patient.

Routine Antibiogram

Resp

Wound


Stratified Antibiogram


P. mirabilis K. oxytoca

E. faecalis

E. coli E. faecalis

UTI

Stratified Antibiogram

Urine Iso	lates Only													
	GRAM NE	GATIVE	N	AMP	AMP/SUL	CEFZLN	CEFTRX	CEFEPIME	CIPRO	GENT	ERTAPEN	PIP/TAZ	TMP/SMX	NITRO
Escheric	hia coli		96	55	58	93	100	100	70	93	100	95	80	98
Enteroba	cter spp.		31	R	R	R	100***	100	100	100	100	100	75	0
Klebsiell	a pneumon	iae	30	R	89	100	100	100	100	100	100	100	100	33
Proteus r	nirabilis		33	83	100	100	100	100	83	83	100	100	83	R
		***	Use with c	aution, Ent	erobacter s	pp., K. aer	ogenes, C	freundii, a	nd S. marc	escens ma	ay develop r	esistance t	o Ceftriaxor	e during
			prolonged	therapy as	a result of c	derepressio	n of Amp C	β-lactamas	se					
	GRAM NE	GATIVE	N	CIPRO	GENT	TOB	PIP/TAZ	CEFPIME	AMK	MERO				
Pseudom	nonas aerug	jinosa	30	100	75	100	100	100	75	75				

UTI

Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Microbiology and Laboratory Diagnostics

XIV. Should ASPs Work With the Microbiology Laboratory to Develop Stratified Antibiograms, Compared With Nonstratied Antibiograms? *Recommendation*

15. We suggest development of stratified antibiograms over solely relying on nonstratified antibiograms to assist ASPs in developing guidelines for empiric therapy (*weak recommendation, low-quality evidence*).

Clinical Infectious Diseases®

© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com. DOI: 10.1093/cid/ciw118

Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Microbiology and Laboratory Diagnostics

XIV. Should ASPs Work With the Microbiology Laboratory to Develop Stratified Antibiograms, Compared With Nonstratied Antibiograms? *Recommendation*

Comment: Although there is limited evidence at this time that stratified antibiograms (eg, by location or age) lead to improved empiric antibiotic therapy, stratification can expose important differences in susceptibility, which can help ASPs develop optimized treatment recommendations and guidelines.

Clinical Infectious Diseases®

© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com. DOI: 10.1093/cid/ciw118

What is a Cross-Table/Combination Antibiogram?

Antibiogram that takes into account cross resistance among bacteria with respect to susceptibility.

Dual Cross-Table Antibiogram
Cross-Table Antibiogram
Combination Antibiogram (CLSI)
Cross-Susceptibility Table

Routine Antibiogram

GRAWINEGAT
Citrobacter freundii
Citrobacter koseri
Enterobacter cloacae cmp
Escherichia coli
Klebsiella aerogenes*
Klebsiella oxytoca
Klebsiella pneumoniae
Morganella morganii
Proteus mirabilis
Serratia marcescens

GRAM NEGA

ATIVE	Ν	AMP	AMP/SUL	CEFTRX	CEFEPIME	CIPRO	GENT	MERO	PIP/TAZ	тов	TMP/SMX	NITRO
	76	R	R	87***	100	97	96	100	91	99	88	96
	108	R	•	100	100	100	100	100	100	100	100	90
cmplx.	115	R	R	85***	96	98	99	100	87	99	93	31
	3,648	66	72	96	99	89	95	100	98	95	84	97
	58	R	R	88***	100	98	100	98	86	100	100	10
	111	R	67	99	100	99	100	100	99	99	94	85
;	515	R	88	99	99	97	99	100	97	99	95	36
	38	R	R	97	100	89	95	100	100	97	84	R
	241	90	93	99	100	95	95	100	100	95	93	R
	63	R	R	97***	100	94	100	100	98	94	100	R

*** Use with caution, Enterobacter spp., K. aerogenes, C. freundii, and S. marcescens may develop resistance to Ceftriaxone during prolonged therapy as a result of derepression of Amp C β-lactamase

no data

^{*} Klebsiella (formally Enterobacter) aerogenes

GRAM NEGATIV

VE							
	N	CIPRO	GENT	TOB	PIP/TAZ	CEFPIME	MERO
2	292	91	97	99	94	97	97

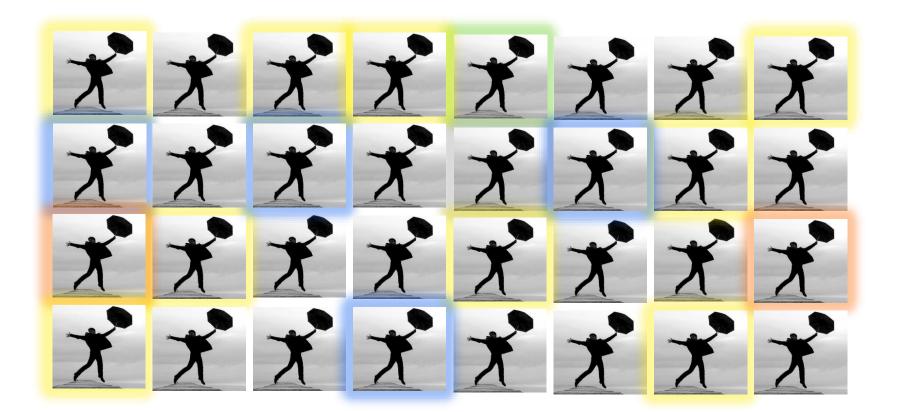
Pseudomonas aeruginosa

St. Mary's Hospital/ED Gram Negative Rod Dual Cross-Table Antibiogram

	Cefepime	Pip/Tazo	Meropen	Cipro	Tobra
Cefepime	95.90%	98.30%	99.20%	97.70%	98.50%
Pip/Tazo		94.60%	99.30%	98.70%	99.30%
Meropen			98.90%	99.60%	99.70%
Ciproflox				87.70%	96.50%
Tobra					94.70%

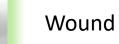
1,492 "Unique" Gram negative bacteria from January – December

Enterobacterales and P. aeruginosa mostly


What is a Weighted-Incidence Syndromic Combination Antibiogram?

Antibiogram that shows for a given infectious condition (syndrome) the likelihood of adequate antibiotic coverage using either monotherapy or combination therapy taking into account the local weighted incidence of the infecting agents.

Weighted-Incidence Syndromic Combination Antibiogram
Stratified Antibiogram by Infection site (CLSI)


Routine Antibiogram

Routine Antibiogram

GR	RAM	NE	GA	TIV

Citrobacter freundii Citrobacter koseri Enterobacter cloacae cmp

Escherichia coli

Klebsiella aerogenes*

Klebsiella oxytoca Klebsiella pneumoniae Morganella morganii Proteus mirabilis

Serratia marcescens

IVE	Ν	AMP	AMP/SUL	CEFTRX	CEFEPIME	CIPRO	GENT	MERO	PIP/TAZ	тов	TMP/SMX	NITRO
	76	R	R	87***	100	97	96	100	91	99	88	96
	108	R	•	100	100	100	100	100	100	100	100	90
ıplx.	115	R	R	85***	96	98	99	100	87	99	93	31
	3,648	66	72	96	99	89	95	100	98	95	84	97
	58	R	R	88***	100	98	100	98	86	100	100	10
	111	R	67	99	100	99	100	100	99	99	94	85
	515	R	88	99	99	97	99	100	97	99	95	36
	38	R	R	97	100	89	95	100	100	97	84	R
	241	90	93	99	100	95	95	100	100	95	93	R
	63	R	R	97***	100	94	100	100	98	94	100	R

*** Use with caution, Enterobacter spp., K. aerogenes, C. freundii, and S. marcescens may develop resistance to Ceftriaxone during prolonged therapy as a result of derepression of Amp C β-lactamase

no data

UTI

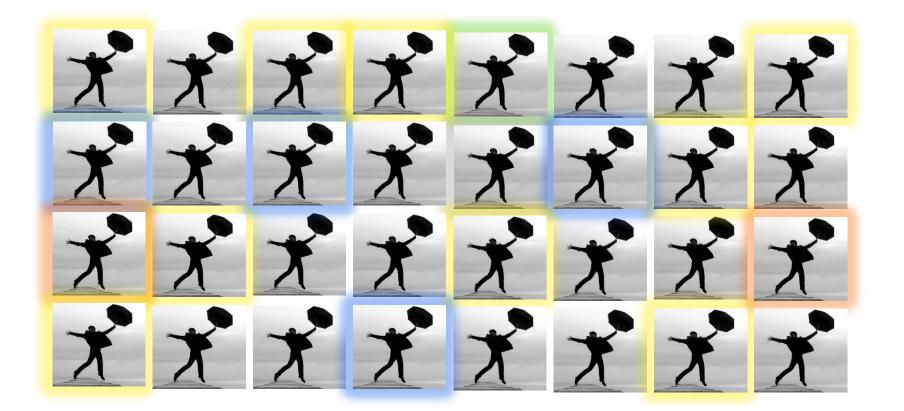
* Klebsiella (formally Enterobacter) aerogenes

Resp

GRAM NEGATIVE

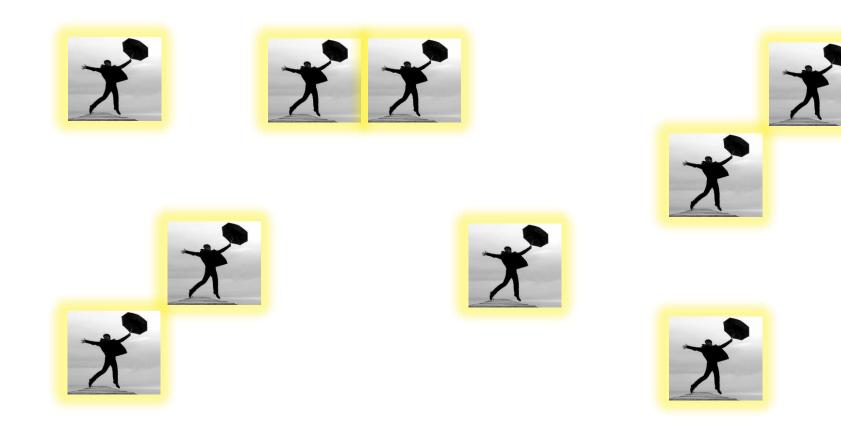
NEGATIVE							
	N	CIPRO	GENT	TOB	PIP/TAZ	CEFPIME	MERO
ruginosa	292	91	97	99	94	97	97

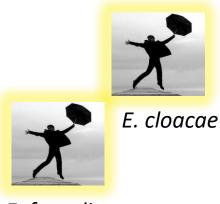
Pseudomonas aeruginos

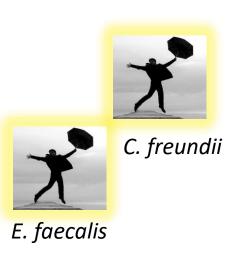


Wound

Tissue

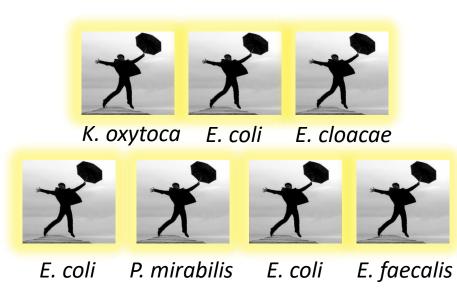

Resp


UTI


P. mirabilis K. oxytoca

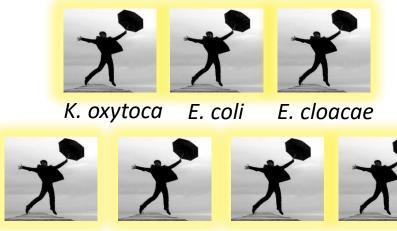
E. faecalis

E. coli E. faecalis



UTI

Choose the abxs that are important


T/S

Covered by specific regime, e.g., T/S

Total numbers of cases in the data set

Equals percent infections covered

E. coli P. mirabilis E. coli E. faecalis

T/S

CIP

TABLE	4.	Weighted-Incidence	Syndromic	Combination
Antibiog	gram			

	Infec cover			
Antimicrobial regimen	UTI	ABI	P^{a}	
Trimethoprim-sulfamethoxazole	55		•••	
Ciprofloxacin (+MTZ) ^b	62	37	<.001	
Cefazolin (+MTZ) ^o	62	47	<.001	
Ceftriaxone (+MTZ) ^b	71	59	<.001	
Ertapenem	71	63	<.001	
Ceftazidime (+MTZ) ^b	76	65	<.001	
Ampicillin-sulbactam	83	68	<.001	
Ampicillin and gentamicin (+MTZ) ^b	84	81	.10	
Cipro + MTZ + vancomycin	•••	84	•••	
Ceftazidime (+MTZ) ^b + vancomycin	88	93	<.001	
Ertapenem + vancomycin	•••	88	•••	
Piperacillin-tazobactam	89	88	.70	
Piperacillin-tazobactam + vancomycin	91	93	.04	
Meropenem	91	91	.72	
Meropenem + vancomycin	93	96	<.001	

NOTE. Listed are 15 common antimicrobial regimens and the percentage of the time that a regimen would cover all recovered organisms in an individual patient's infection. This was cal-

eee uunn ealth.

	Beta-hemolytic													
	Staphylococcus aureus	Enterococcus species	,	Streptococcus pneumoniae	Escherichia coli	Klebsiella pneumoniae	Proteus mirabilis	Pseudomonas aeruginosa	Citrobacter species	Enterobacter cloacae	Klebsiella oxytoca	Enterobacter aerogenes	Serratia marcescens	Morganell morganii
Ampicillin	13	96	97	69	54	0	80	•••	2	0	1	0	0	0
Trimethoprim-														
sulfamethoxazole	99		•••	•••	75	90	85		90	90	95	98	91	80
Fluoroquinolone	74	69		98	84	97	85	85	96	96	98	99	97	91
Cefazolin	65			•••	92	96	90		47	1	76	3	1	0
Ceftriaxone			100		97	98	97	•••	94	88	98	94	99	99
Ertapenem	•••			•••	100	100	100		100	99	100	100	100	99
Ceftazidime					97	98	96	97	94	89	99	94	99	99
Ampicillin-														
sulbactam					82	93	97		66	29	91	24	5	15
Piperacillin-														
tazobactam		•••		•••	98	96	100	97	94	92	96	92	99	99
Meropenem					100	99	100	94	98	100	100	100	100	

TABLE 3. Traditional Antibiogram for the Study Site over the Entire Study Period

NOTE. Data are percent of isolates susceptible. This antibiogram includes the first unique bacterial isolates from any body site, from all outpatient locations (including emergency room) for the entire study period. Ellipses indicate that there are less than 100 sensitivity tests done for this combination of medication and organism over the study period. The 14 most frequently isolated organisms, excluding coagulase negative *Staphylococcus*, are shown.

T/S WISCA = 55% Covered

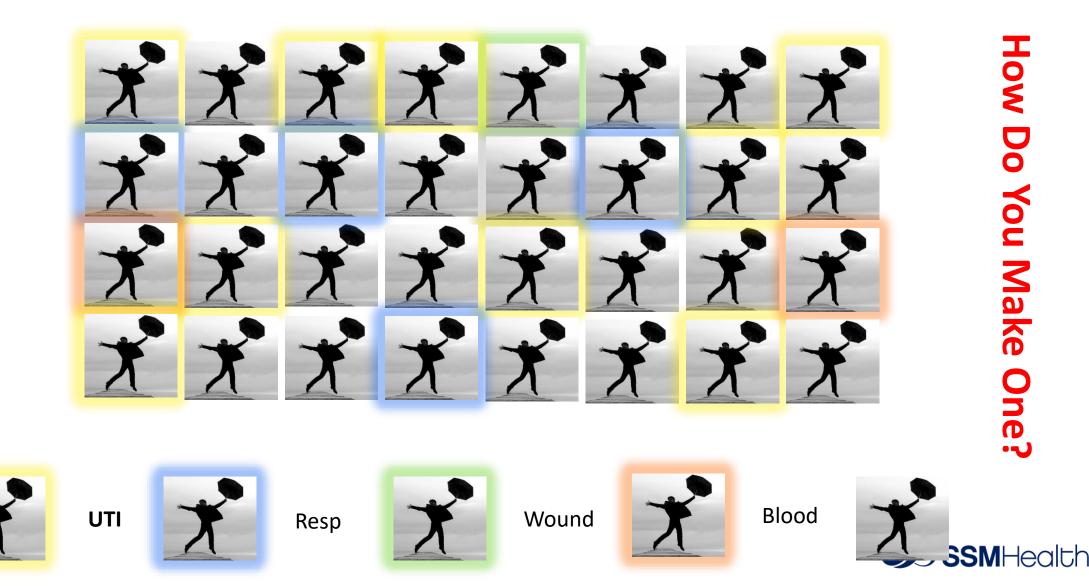

	Staphylococcus aureus	Enterococcus species	Beta-hemolytic Streptococcus group B		Escherichia coli	Klebsiella pneumoniae	Proteus mirabilis	Pseudomonas aeruginosa	Citrobacter species	Enterobacter cloacae	Klebsiella oxytoca	Enterobacter aerogenes	Serratia marcescens	Morganella morganii
Ampicillin	13	96	97	69	54	0	80		2	0	1	0	0	0
Trimethoprim-														
sulfamethoxazole	99				75	90	85		90	90	95	98	91	80
Fluoroquinolone	74	69		98	84	97	85	85	96	96	98	99	97	91
Cefazolin	65	•••		•••	92	96	90		47	1	76	3	1	0
Ceftriaxone			100		97	98	97	•••	94	88	98	94	99	99
Ertapenem	•••	•••	•••	•••	100	100	100		100	99	100	100	100	99
Ceftazidime					97	98	96	97	94	89	99	94	99	99
Ampicillin-														
sulbactam					82	93	97	•••	66	29	91	24	5	15
Piperacillin-														
tazobactam	•••			•••	98	96	100	97	94	92	.96	92	99	99
Meropenem		•••			100	99	100	94	98	100	100	100	100	

TABLE 3. Traditional Antibiogram for the Study Site over the Entire Study Period

NOTE. Data are percent of isolates susceptible. This antibiogram includes the first unique bacterial isolates from any body site, from all outpatient locations (including emergency room) for the entire study period. Ellipses indicate that there are less than 100 sensitivity tests done for this combination of medication and organism over the study period. The 14 most frequently isolated organisms, excluding coagulase negative *Staphylococcus*, are shown.

CIP WISCA = 62% Covered

How Do You Make One?

Get the electronic health records of a select patient population (syndrome) who had a final diagnosis code consistent UTI and had a positive urine cult

How Do You Make One?

Step 2

P. mirabilis K. oxytoca

For the selected patient population collect culture and susceptibility data. For each case determine whether the infection//swould be "covered" by one of the an infection control con

E. faecalis

Choose the antibiotics for treatment of UTIs

K. pneumoniae

TABLE 4. Weighted-Incidence Syndromic CombinationAntibiogram

Step 3

Put the data in a usable reporting format.

	Infec cover		
Antimicrobial regimen	UTI	ABI	$P^{\mathtt{a}}$
Trimethoprim-sulfamethoxazole	55	149	•••
Ciprofloxacin (+MTZ) ^b	62	37	<.001
Cefazolin (+MTZ) ^b	62	47	<.001
Ceftriaxone (+MTZ) ^b	71	59	<.001
Ertapenem	71	63	<.001
Ceftazidime (+MTZ) ^b	76	65	<.001
Ampicillin-sulbactam	83	68	<.001
Ampicillin and gentamicin (+MTZ) ^b	84	81	.10
Cipro + MTZ + vancomycin	***	84	•••
Ceftazidime (+MTZ) ^b + vancomycin	88	93	<.001
Ertapenem + vancomycin	•••	88	***
Piperacillin-tazobactam	89	88	.70
Piperacillin-tazobactam + vancomycin	91	93	.04
Meropenem	91	91	.72
Meropenem + vancomycin	93	96	<.001

NOTE. Listed are 15 common antimicrobial regimens and the percentage of the time that a regimen would cover all recovered organisms in an individual patient's infection. This was cal-

Infect Control Hosp Epidemiol 2012;33(4):381-388

Preparation Method Using Cumulative Susceptibility Test Data

1. Determine the "Syndrome" you are looking to cover in your patient population.

JAGS 68:55-61, 2020 © 2019 The American Geriatrics Society JANUARY 2020-VOL. 68, NO. 1

UTI

2. Stratify the Routine Antibiogram by Syndrome

Urine Isola	ates Only													
	GRAM NE	GATIVE	N	AMP	AMP/SUL	CEFZLN	CEFTRX	CEFEPIME	CIPRO	GENT	ERTAPEN	PIP/TAZ	TMP/SMX	NITRO
Escherich	ia coli		96	55	58	93	100	100	70	93	100	95	80	98
Enterobac	ter spp.		31	R	R	R	100***	100	100	100	100	100	75	0
Klebsiella	pneumon	iae	30	R	89	100	100	100	100	100	100	100	100	33
Proteus mirabilis			33	83	100	100	100	100	83	83	100	100	83	R
		***	Use with c	aution, <i>Ent</i>	erobacter s	pp., K. aer	ogenes, C	freundii, a	nd S. marc	escens ma	ay develop r	esistance t	o Ceftriaxon	e during
			prolonged t	therapy as	a result of c	derepressio	n of Amp C	β-lactamas	se					
	GRAM NE	GATIVE	N	CIPRO	GENT	TOB	PIP/TAZ	CEFPIME	AMK	MERO				
Pseudomo	onas aerug	inosa	30	100	75	100	100	100	75	75				

3. Identify the Antibiotics of Interest

Urine Isolates Only												
GRAM NEGATIVE	N	AMP	AMP/SUL	CEFZLN	CEFTRX	CEFEPINE	CIPRO	GENT	ERTAPEN	PIP/TAZ	TMP/SMX	NITRO
Escherichia coli	96	55	58	93	100	100	70	93	100	95	80	98
Enterobacter spp.	31	R	R	R	100***	100	100	100	100	100	75	0
Klebsiella pneumoniae	30	R	89	100	100	100	100	100	100	100	100	33
Proteus mirabilis	33	83	100	100	100	100	83	83	100	100	83	R
**:	* Use with c	aution, Ent	terobacter s	pp., K. aei	rogenes, C	. freundii, a	nd S. marc	escens ma	ay develop r	esistance t	to Ceftriaxon	e during
	prolonged	therapy as	a result of c	lerepressio	n of Amp C	β-lactama	se					
GRAM NEGATIVE	N	CIPRO	GENT	TOB	PIP/TAZ	CEFPIME	AMK	MERO				
Pseudomonas aeruginosa	30	100	75	100	100	100	75	75				

Weighted-Incidence Syndromic Combination Antibiogram 4. Make the Calculations

Total		Cipro	A/C	T/S
96	E. coli	67	56	77
33	P. mirabilis	30	29	33
<u>30</u>	K. pneumoniae	25	30	25
159		<u>122</u>	<u>115</u>	<u>135</u>
		159	159	159
	Percent		WISCA	
	Coverage	77%	72%	85%

Number Isolates Susceptible

JAGS 68:55-61, 2020 © 2019 The American Geriatrics Society JANUARY 2020-VOL. 68, NO. 1

Urine culture Stratified Antibiogram

E. coli P. mirabilis K. pneumoniae

Cipro S=70%, A/C S=58%, T/S S=80% Cipro S=91%, A/C S=89%, T/S S=100% Cipro S=83%, A/C S=100%, T/S S=83%

Stratified Antibiogram

Urine Isolates Only												
GRAM NEGATIVE	N	AMP	AMP/SUL	CEFZLN	CEFTRX	CEFEPINE	CIPRO	GENT	ERTAPEN	PIP/TAZ	TMP/SMX	NITRO
Escherichia coli	96	55	58	93	100	100	70	93	100	95	80	98
Enterobacter spp.	31	R	R	R	100***	100	100	100	100	100	75	0
Klebsiella pneumoniae	30	R	89	100	100	100	100	100	100	100	100	33
Proteus mirabilis	33	83	100	100	100	100	83	83	100	100	83	R
***	Use with c	aution, Ent	terobacter s	pp., K. aer	ogenes, C	freundii, a	nd S. marc	escens ma	ay develop r	esistance t	to Ceftriaxon	e during
	prolonged	therapy as	a result of d	lerepressio	n of Amp C	β-lactama	se					
GRAM NEGATIVE	N	CIPRO	GENT	TOB	PIP/TAZ	CEFPIME	AMK	MERO				
Pseudomonas aeruginosa	30	100	75	100	100	100	75	75				

		WISCA					
	Percent	Cipro	A/C	T/S			
55-61, 2020 e American Geriatrics Society	Coverage	77%	72%	85%			

JAGS 68:55-61, 2020 © 2019 The American Geriatrics Society JANUARY 2020-VOL. 68, NO. 1

Conclusions

- A new edition (Ed5) of the CLSI M39, Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, document has recently been released.
- The new M39 document has been rewritten and reorganized with some new material.
- The new M39 document talks about Routine Antibiograms and Enhanced Antibiograms, but there is not a lot of detail on how to create some of the Enhanced Antibiograms.
- Three Enhanced Antibiograms described in the new M39 document, a Stratified Antibiogram, a Cross-table Antibiogram, and a Weighted-Incidence Syndromic Combination Antibiogram were discussed.

Questions?

Thank you!

