Viewing the SARS-CoV-2 pandemic through a genomic lens

Kelsey Florek, PhD, MPH Senior Genomics and Data Scientist Wisconsin State Laboratory of Hygiene June 27, 2022

> Slides live at: www.k-florek.net/talks

S@kelsey_florek

Classification of an evolving virus

Key components of dynamic viral classification

- capture local and global patterns of genetic diversity in a timely and coherent manner
- track emerging lineages and their movement
- robust and flexible to changes in viral diversity
- ability to incorporate the emergence and disappearance of lineages over time

Rambaut et al. (2020) Nature Microbiology

Nextclade

- A VOC or VOI is recognized by the WHO and given a Greek letter label
- A clade reaches >20% global frequency for 2 or more months
- A clade reaches >30% regional frequency for 2 or more months
- A clade shows consistent >0.05 per day growth in frequency where it is circulating and has reached >5% regional frequency

https://clades.nextstrain.org/

Pangolin

- Pango Committee maintains the "rules" of the nomenclature system
- Pango lineages are designed to represent the branches of the pandemic tree
- Pango lineages are intended to highlight epidemiologically-relevant events
- Pango lineages can be classified through two major methods
 - pangoLEARN: random forest based decision model
 - UShER: sample placement on preexisting phylogenetic trees

https://www.pango.network/

WHO Naming Convention

Currently circulating variants of concern (VOCs):

WHO label	Pango lineage•	GISAID clade	Nextstrain clade	Additional amino acid changes monitored°	Earliest documented samples	Date of designation
Omicron*		GR/484A		+S:R346K	Multiple countries, Nov-2021	VUM: 24-Nov- 2021
	B.1.1.529		21K, 21L, 21M, , 22A, 22B, 22C	+S:L452X +S:E486V		VOC: 26-Nov- 2021
				10.1 100 1		

* Includes BA.1, BA.2, BA.3, BA.4, BA.5 and descendent lineages. It also includes BA.1/BA.2 circulating recombinant forms such as XE. WHO emphasizes that these descendant lineages should be monitored as distinct lineages by public health authorities and comparative assessments of their virus characteristics should be undertaken.

The full list of Pango lineages can be found here: https://cov-lineages.org/lineage_list.html; for FAQ, visit: https://www.pango.network/faqs/

° Only found in a subset of sequences

Previously circulating VOCs:

	WHO label	Pango lineage•	GISAID clade	Nextstrain clade	Earliest documented samples	Date of designation
	Alpha	B.1.1.7	GRY	20I (V1)	United Kingdom, Sep-2020	VOC: 18-Dec-2020 Previous VOC: 09- Mar-2022
	Beta	B.1.351	GH/501Y.V2	20H (V2)	South Africa, May-2020	VOC: 18-Dec-2020 Previous VOC: 09- Mar-2022
	Gamma	P.1	GR/501Y.V3	20J (V3)	Brazil, Nov-2020	VOC: 11-Jan-2021 Previous VOC: 09- Mar-2022
	Delta	B.1.617.2	G/478K.V1	21A, 21I, 21J	India, Oct-2020	VOI: 4-Apr-2021 VOC: 11-May-2021 Previous VOC: 7-Jun- 2022

*Includes all descendent lineages.

Current SARS-CoV-2 Situation Report

Wisconsin SARS-CoV-2 Genomic Dashboard

-

Time Period:

Quarterly

Wisconsin Lineages

https://dataportal.slh.wisc.edu/sc2dashboard

Emergence of Omicron

https://doi.org/10.1038/d41586-022-00215-2 https://nextstrain.org/

Emergence of Omicron

Three Theories

- Undetected Spread
- Animal Reservoir (Mouse/Rat)
- Chronic Infection

Omicron Today

https://nextstrain.org/

Omicron Today

https://nextstrain.org/

Omicron Today

https://doi.org/10.1038/s41586-022-04980-y

Accelerated Article Preview

BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection

"Importantly, BA.2.12.1 and BA.4/BA.5 display stronger neutralization evasion than BA.2 against the plasma from 3-dose vaccination and, most strikingly, from post-vaccination BA.1 infections."

> https://dataportal.slh.wisc.edu/sc2dashboard Cao et al. 2022 *Nature*

• The adaptive landscape for SARS-CoV-2 has been difficult to predict or measure.

- The adaptive landscape for SARS-CoV-2 has been difficult to predict or measure.
- It is very likely we will see new immune escape variants continue to emerge.

- The adaptive landscape for SARS-CoV-2 has been difficult to predict or measure.
- It is very likely we will see new immune escape variants continue to emerge.
- Increases in at home testing has the potential to bias genomic surveillance.

Challenges in the application of genomic surveillance data

Public Health is currently a series of Data Silos

Integrating environmental, epidemiological, and genomic data with a data lake

data lake: centralized repository designed to store, process, and secure large amounts of structured and unstructured data at any scale

Integrating environmental, epidemiological, and genomic data with a data lake

data lake: centralized repository designed to store, process, and secure large amounts of structured and unstructured data at any scale

- Data Lakes retain all data
- Support all data types
- Adapt easily to changes
- Require data scientists to navigate
- Require proper management to prevent a data swamp

Integrated data better supports public health

- Identify correlations between genetic variants and vaccination breakthroughs or increased symptom severity.
- Faster and more informed outbreak response.
- Application of machine learning models and AI to identify genomic patterns.
- Big data enables the application of precision public health efforts.

Acknowledgments

Abigail Shockey, PhD

Christopher Jossart, MPH

- WSLH Viral Sequencing Group
 - Tim Davis
 - Rich Griesser
 - Kyley Guenther
 - Erika Hanson
- Special Thanks
 - Erika Hanson

Reveal.JS

Questions?