Microbial Taxonomy Revision: Enough is Enough!...Or Is It?

Erik Munson Marquette University Wisconsin Clinical Laboratory Network Laboratory Technical Advisory Group

The presenter states no conflict of interest and has no financial relationship to disclose relevant to the content of this presentation.

Someone a lot smarter than I am

BIOGRAPHICAL FEATURE

Biographical Feature: Franklin P. Koontz, Ph.D., D(ABMM), F(AAM)

"When we're doing these identifications by genetic methods and genomic changes, they say, 'Oh wait a minute. This organism is different than that. While they produce the same disease, they look exactly the same on the plate, they produce the same biochemical reactions, but they're different in [x], so they give it a new name. And eventually everybody in the world is going to have an organism named after him because, you know, the [x] wasn't where it was

supposed to be.

J Clin Microbiol. 58:e01975-19

A history lesson

FIRST ATTEMPTS

- Nomenclature for prokaryotes introduced in 1700s; utilized botanical rules
- Staphylococcus aureus Rosenbach 1884
 Type strain of *S. aureus* (ATCC 12600)
 "Staphylococcus pyogenes aureus" (Rosenbach 1884)
 "Micrococcus aureus" (Zopf 1885)
 "Staphlococcus pyogenes citreus" (Passet 1885)
 "Micrococcus pyogenes" (Lehmann and Neumann 1896)

Confusing repertoire of ~40,000 names

SYNONYMS

• Homotypic

"Staphylococcus pyogenes aureus", effective name "Micrococcus aureus", effective name

we'll get to this later

SYNONYMS

• Heterotypic

"Staphlococcus pyogenes citreus", effective name "Micrococcus pyogenes", effective name

Ann Landers Abigail Van Buren

we'll get to this later

WE'VE GOTTA CLEAN THIS UP

 International Committee on Systematics of Prokaryotes (ICSP)

 First Congress for Bacteriology Plenary Session established contemporary approaches (1973)

 International Code of Nomenclature of Bacteria (THE CODE) published in 1975

LAYING DOWN THE LAW

Approved Lists of Bacterial Names

January 1980 2,300 prokaryotic names Reject rest

All novel nomenclature must be accepted by International Journal of Systematic and Evolutionary Microbiology

International Bulletin of Bacteriological Nomenclature and Taxonomy (1951-1965) International Journal of Systematic Bacteriology (1966-1999)

 Valid nomenclature types were required to be "designated" (i.e., deposit type strains)

MOST RECENT CODE UPDATE IN 2019

Two General Considerations

"The progress of bacteriology can be furthered by a precise system of nomenclature accepted by the majority of bacteriologists of all nations."

"To achieve order in nomenclature, it is essential that scientific names be regulated by internationallyaccepted Rules."

 Bacteriologist has responsibility of classifying; ICSP has responsibility of standardizing taxonomy (prescribing naming procedures; assuring correctness)

Discovering your novel taxon

DISCOVERING YOUR NEW TAXON

• Effective description

Several recommendations provided in THE CODE Minimum standards may vary by genus Polyphasic approach to characterization (next slide)

Designation of type strain

Viable isolate deposited in culture collection centers in two nations

As of January 2018, whole genome sequence of type strain must be deposited in GenBank, with genome accession number included as part of effective description

POLYPHASIC CHARACTERIZATION

Phenotypic

Cultivation conditions (medium, incubation, duration)

Classical observations (colony morphology, Gram, catalase, oxidase, motility, biochemical tubes)

Chemotaxonomic markers (fatty acid, isoprenoid) MALDI-TOF MS contribution

> Number of characteristics must be sufficiently high to distinguish new species from related species; recommend 5 strains (including type)

POLYPHASIC CHARACTERIZATION

Phenotypic

• Genotypic

% G + C content DNA-DNA hybridization 16S rRNA (98.8% threshold) and housekeeping gene sequence analysis Phylogenetic tree presentation

POLYPHASIC CHARACTERIZATION

Phenotypic

Whole genome sequencing

96% average nucleotide identity (90% coverage) Can vary (S. maltophilia 88.5%; M. tuberculosis 98.8%)

PUBLISH IT--DIRECT APPROACH

International Journal of Systematic and Evolutionary Microbiology (2012), 62, 601-607

Japan

DOI 10.1099/ijs.0.031658-0

Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces

Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650,

Kaihei Oki, Yuko Kudo and Koichi Watanabe

Correspondence Koichi Watanabe koichi-watanabe@yakult.co.jp

Two Gram-stain-positive strains, YIT 12363^T and YIT 12364^T, were isolated from human faeces. They were rod-shaped, non-motile, asporogenous, facultatively anaerobic and did not exhibit catalase activity. Comparative analyses of 16S rRNA, *pheS* and *rpoA* gene sequences demonstrated that the novel strains were members of the genus *Lactobacillus*. On the basis of 16S rRNA gene sequence similarity, the type strains of *Lactobacillus casei* (95.3 % similarity), *Lactobacillus paracasei* subsp. *paracasei* (95.6 %), *Lactobacillus paracasei* subsp. *tolerans* (95.3 %) and *Lactobacillus rhamnosus* (95.4 %) were the closest neighbours to strain YIT 12363^T. For strain YIT 12364^T, the highest similarity values were observed with the type strains of *Lactobacillus rapi* (95.8, 96.0 and 96.0 %, respectively). Phenotypic and genotypic features demonstrated that these strains each represent a separate novel species of the genus *Lactobacillus*, and the names *Lactobacillus senioris* sp. nov. (type strain YIT 12364^T=JCM 17472^T=DSM 24301^T) and *Lactobacillus senioris*

Biochemical

Characteristic	1	2	3
Growth at:			
15 °C	+	-	+
pH 4.0	-	+	+
Tolerance to 5% salt	w	-	-
Ammonia production from arginine	+	+	-
Acid production from:			
Methyl β-D-xylopyranoside	-	+	-
D-Galactose	-	-	w
D-Fructose	+	w	+
Methyl ¤-D-glucopyranoside	-	+	-
N-Acetylglucosamine	w	-	-
Maltose	-	+	+
Lactose	-	-	w
Melibiose	-	+	+
Sucrose	-	w	+
Melezitose	-	+	+
Raffinose	-	+	+
Turanose	-	+	-
Gluconate	+	w	w
5-Ketogluconate	-	w	w
Optical form of lactic acid	DL.	L	DL
Peptidoglycan type	L-Lys-D-Asp	L-Lys-D-Asp	ND
DNA G+C content (mol%)	39.8	41.6	42.0
N-Acetylglucosamine Maltose Melibiose Sucrose Melezitose Raffinose Turanose Gluconate 5-Ketogluconate Optical form of lactic acid Peptidoglycan type DNA G+C content (mol%)	W + L-Lys-D-Asp 39.8	+ + + + w + + + u L-Lys-D-Asp 41.6	- + + + + + + + + - w W DL ND 42.0

	$\mathbf{\vee}$		Canor	
Fatty acid	1	2	3	4
Saturated				
C14:0	1.16	11.98	-	1.22
C16:0	4.1	17.88	2.23	18.2
C16:0 3OH	-	0.36	-	-
C18:0	0.82	0.56	1.53	0.59
C _{18:0} 12OH	4.42	4.74	-	-
Unsaturated				
C16:105c	-	0.56	-	-
C16:107c	-	4.63	-	2.28
C _{18:1} ω9c	56.61	30.32	57.22	28.18
C _{18:1} ω7с DMA	0.71	0.76	0.57	-
C18:2006,9c	-	-	1.09	-
Cyclopropane				
C ₁₉ cyc 9,10	29.29	18.66	34.39	14.9
C ₁₉ cyc 11,12	-	-	-	5.41
Summed features*				
10	2.3	7.94	2.05	29.22
12	-	0.54	0.93	-
Unknown fatty acid (ECL 18.199)	0.59	1.05	-	-

Chemotaxonomic

16S rRNA gene sequencing

Description of Lactobacillus senioris sp. nov.

Lactobacillus senioris (se.ni'o.ris. L. gen. n. senioris of/from an elderly person, indicating the source of the type strain).

Cells are rod-shaped $(0.7 \times 1.0-10.0 \ \mu m)$ and occur singly, in pairs or in chains comprising three to four cells. Cells are

Gram-stain-positive, non-motile, asporogenous and facultatively anaerobic. Catalase and pseudocatalase are not produced. After anaerobic growth at 37 °C for 72 h, colonies on MRS agar are circular, 1-2 mm in diameter and beige with a smooth or rough surface. In MRS broth, growth occurs at 15 °C but not at 10 °C or 45 °C. Growth does not occur at pH 4.0 or pH 8.5. Growth occurs weakly in the presence of 5% NaCl but not in the presence of 8% NaCl. Gas is produced from glucose. Both L- (72%) and D-lactate (28%) are produced as the end products from glucose. Ammonia is produced from arginine. Nitrate is not reduced. Acid is produced from L-arabinose, D-ribose, Dxylose, D-glucose, D-fructose, N-acetylglucosamine (weakly) and gluconate. Aesculin is not hydrolysed. Dextran is produced from sucrose. Cells do not contain not. meso-diaminopimelic acid in their cell-wall peptidoglycan. Peptidoglycan structure is of the I-Lys-D-Asp type in the presence of Lys, Glu, Ala and Asp. The major cellular fatty acids are unsaturated fatty acid C18:109c and cyclopropane C19 cyc 9,10. Phylogenetic analysis of the 16S rRNA gene sequence places the species in the L. buchneri group of lactobacilli

The type strain, YIT 12364^{T} (=JCM 17472^{T} =DSM 24302^{T}), was isolated from faeces of a 100-year-old elderly female person in Okinawa, Japan. The DNA G+C content of the type strain is 41.6 mol%.

Effective description...now valid description

polyphasic characterization novel species no synonyms type strain documented published in *IJSEM*

(2012: whole genome sequence not required yet)

Accepted/added by IJSEM; validation list

PUBLISH IT--ALTERNATE APPROACH

Antonie van Leeuwenhoek (2014) 106:543–553 DOI 10.1007/s10482-014-0226-0

ORIGINAL PAPER

Nocardia vulneris sp. nov., isolated from wounds of human patients in North America

Brent A. Lasker · Melissa Bell · Hans-Peter Klenk · Cathrin Spröer · Peter Schumann · June M. Brown

0.002

Table 2 Phenotypic properties that distinguish the N. vulneris clinical isolates from the type strains of their closest phylogenetically related neighbors

Characteristics	Clinical isolates $(n = 8)$	N. altamirensis DSM 44997 ^T	N. brasiliensis ATCC 19296 ^T	<i>N. iowensis</i> DSM 45197 ^T	N. tenerifensis DSM 44704 ^T
Utilization of:					
Adonitol	_	+	+	+	_
L-arabinose	_	_	+	_	+
D-cellobiose	-7/8	+	_	_	_
Dulcitol	_	_	_	_	+
D-fructose	+	+	+	_	+
D-galactose	+	+	+	_	+
Glycerol	+		-	+	+
Lactose	_	Effectiv	e desci	ription	_
Maltose	_	+	+	+	+
D-mannitol	+ 00	lytobacia	tharac	torizat	idn
Mannose	+ pc	nyphasic	, <u>unara</u>	rtenzar	ΠŲΠ
Melibiose	-	+ 001		lāc	_
Raffinose	-6/8	_ 10\	ver spec	IES	_
Salicin	+	+ 00			_
D-sorbitol	-	+ 10	Synony	1115	+
Sucrose	-	tuto otro	aita daau	u ⁺ monto	d ⁺
Trehalose	+	cype stra		linente	u_
Growth at 35 °C	+	-	+	+w	+
Growth at 45 °C	-	-	-	+w	+w
Hydrolysis of:	(201				
Adenine (21 days)	+ (201	4: who	e_genon	he sequ	lence
Casein (14 days)	+	-	+	+ + + >	_
Hypoxanthine	+	– not r	equirea	yet)	+
Tyrosine	+	-	+	+	-
Urea (Christensen)	+	+	-	+	+
Acetamide (7 days)	-	-	-	+	_
Nitrate reduction (0.2 %)	+	-	-	-	-
Lysis on 5 % rabbit blood agar	+	_	-	_	_
Antimicrobial resistance tob:					
Ampicillin (≥32 µg/ml)	S	S	R	R	R
Cefriaxone (≥64 µg/ml)	S	S	R	R	S
Clarithromycin (≥8 µg/ml)	R	I	R	R	I
Ciprofloxacin (≥4 µg/ml)	R	I	R	I	R
Imipenem (≥16 µg/ml)	R	S	R	I	S
Minocycline (≥8 µg/ml)	I	S	I	S	I

Description of *N. vulneris* sp. nov. *N. vulneris* (vul'ne.ris. L. gen. n. *vulneris*, of a wound).

An aerobic, non-motile, Gram-stain positive, weakly acid-fast actinomycete obtained primarily from wound infections. Forms pale orange to tan, molar tooth shaped colonies with abundant aerial and substrate hyphae on HIA with rabbit blood, TSA with sheep blood, Middlebrook and Cohn 7H11 agar with OADC and heart infusion agar. Hemolysis of HIA supplemented with rabbit blood is observed after 7 days at 35 °C but not on TSA supplemented with sheep blood. Utilizes and produces acid from Dfructose, p-galactose, p-glucose, glycerol, i-myo-inositol, D-mannitol, mannose, salicin, and trehalose, but does not utilize adonitol, L-arabinose, D-cellobiose (most strains), dulcitol, i-erythritol, lactose, maltose, melibiose, raffinose (most strains), L-rhamnose, Dsorbitol, sucrose, and p-xylose. Utilizes citrate (most strains) as a sole carbon source but not acetamide as a carbon or nitrogen source. Grows in the presence of lysozyme, reduces nitrate but not nitrite, but has no arylsulfatase activity. Hydrolyses urea, adenine, casein, hypoxanthine, and tyrosine but does not hydrolyse xanthine. Esculin hydrolysis is weakly positive by browning but negative by UV light absorption. Grows at 25 and 35 °C but not 45 °C. Whole-cell hydrolysates contain meso-diaminopimelic acid and arabinose and galactose (cell-wall chemotype IV sensu Lechevalier and Lechevalier 1970). MK-8-(H4)@-cyc and MK-9 are the predominant menaquinones with minor amounts of MK-8 (H2). Polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids of the type strain are composed of palmitic acid (C16:0), tuberculostearic acid (10-methyl C18:0), oleic acid C18:1 cis9 and content of the type strain is 68.4 mol % (68.1 mol % from the 9.4 Mbp draft genome sequence).

The type strain W9851^T (= DSM 45737^T = CCUG $62683^{T} = NBRC \ 108936^{T}$) was isolated from a 54-male patient with a leg wound in the state of Illinois. The GenBank accession number of the 16S rRNA gene sequence of the type strain is JN705252 and the accession number for the draft genome sequence is JNFP00000000.

DOI 10.1099/ijs.0.000008-0

Validation List no. 161

Correspondence Aharon Oren aharon.oren@mail.huji.ac.il George M. Garrity garrity@msu.edu

List of new names and new combinations previously effectively, but not validly, published

Aharon Oren¹ and George M. Garrity²

¹The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel

²Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, U.S.A

Name/authors	Proposed as	Nomenclatural type*	Priority†	Reference
Nocardia vulneris Lasker et al. 2014, 551	sp. nov.	W9851 (=CCUG 62683=DSM 45737=NBRC 108936)	11	14
Paracoccus pacificus Zhang et al. 2014, 729	sp. nov.	F14 (=CGMCC 1.12755=LMG 28106=MCCC 1A09947)	18	33
Pedobacter kyungheensis Yang et al. 2012, 313	sp. nov.	THG-T17 (=KACC 16221=LMG 26577)	27	32
Photobacterium piscicola Figge et al. 2014, 332	sp. nov.	W3 (=LMG 27681=NCCB 100098)****	27	7
Photobacterium sanctipauli Moreira et al. 2014, 7##	sp. nov.	A-394 (=CIAM 1982=LMG 27910)	12	21
Rhizobium smilacinae Zhang et al. 2014, 721	sp. nov.	PTYR-5 (=CCTCC AB 2013016=LMG 27604)####	22	34
Roseivivax atlanticus Li et al. 2014, 867	sp. nov.	22II-S10s (=LMG 27156=MCCC 1A09150)	5	18
Sphingobacterium pakistanense corrig. Ahmed et al. 2014, 330§§§§	sp. nov.	NCCP-246 (=KCTC 23914=LMG 28524)	35	2
Thiolapillus Nunoura et al. 2014, 9 ## 5555	gen. nov.	Thiolapillus brandeum	13	26
Thiolapillus brandeum Nunoura et al. 2014, 10## ####	sp. nov.	Hiromi 1 (=DSM 23672=JCM 15507)	13	26
Vibrio crosai González-Castillo et al. 2014, 462	sp. nov.	CAIM 1437 (=DSM 27145)	9	9
Vibrio madracius Moreira et al. 2014, 408	sp. nov.	A-354 (=CBAS 482=LMG 28124)	14	20
Winogradskyella jejuensis Kim & Oh 2012, 891	sp. nov.	CP32 (=JCM 18454=KCTC 23835)	31	12

SO YOU THINK YOU'VE GOT PROBLEMS?

Surprising and rewarding puzzles to sharpen your mind

Yes, there are "novel" problems

HUUUUUUUUUUUUUUUUU?

GBE

Comparative Genomics and Pan-Genomics of the Myxococcaceae, including a Description of Five Novel Species: *Myxococcus eversor* sp. nov., *Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis* sp. nov., *Myxococcus vastator* sp. nov., *Pyxidicoccus caerfyrddinensis* sp. nov., and *Pyxidicoccus trucidator* sp. nov.

James Chambers^{1,†}, Natalie Sparks^{1,†}, Natashia Sydney¹, Paul G. Livingstone^{1,2}, Alan R. Cookson¹, and David E. Whitworth ^{1,*}

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY VALIDATION LIST NO. 201 Oren and Garrity, Int. J. Syst. Evol. Microbiol. 2021;71:004943 DOI 10.1099/ijsem.0.004943

Valid publication of new names and new combinations effectively published outside the IJSEM

Myxococcus llanfairpwilgwyngyllgogerychwyrndrobwllllantysiliogogogochensis Chambers et al. 2021, 1^{3,23} 12

atlasobscura.com/places/llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch

FLIP-FLOPPING

Acinetobacter dijkshoorniae sp. nov. Published in *IJSEM* in 2016 Designation was found to be synonym of A. lactucae Reverted to Acinetobacter lactucae in 2018 Int J Syst Evol Microbiol. 2018; 68:131-132 Pseudopropionibacterium rubrum sp. nov. Effectively described in June 2018 Accepted by *IJSEM* in September 2018 $\star\star\star$ Illegitimate designation in August 2019 VOTE Arachnia rubra comb. nov. $\star \star \star$

Int J Syst Evol Microbiol. 2019; 69:2612-2615

Yes, there are "revision" problems

Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov.

Enterobacteriaceae

Enterobacterales

Enterobacteriaceae Erwiniaceae fam. nov. Pectobacteriaceae fam. nov. Yersiniaceae fam. nov. Hafniaceae fam. nov. Morganellaceae fam. nov. Budviciaceae fam. nov.

LUCKILY...

Table 2A Enterobacterales M02 and M07

Table 2A. Zone Diameter and MIC Breakpoints for Enterobacterales

Testing Cor	nditions		Routine QC Recommendations (see Tables 4A-1 and 5A-1 for acceptable QC ranges)
Medium:	Disk diffusion: MHA		
	Broth dilution: CAMHB; iron-depleted CAMHB for		Escherichia coli ATCC®a 25922
	cefiderocol (see Appendix I) ¹	- 1	Pseudomonas aeruginosa ATCC [®] 27853 (for carbapenems)
	Agar dilution: MHA		Staphylococcus aureus ATCC [®] 25923 (for Salmonella enterica ser.
Inoculum:	Broth culture method or colony suspension, equivalent to a		Typhi azithromycin disk diffusion testing only; see Table 4A-1)
	0.5 McFarland standard		
Incubation:	35°C±2°C; ambient air		Refer to Tables 4A-2 and 5A-2 to select strains for routine QC of β-lactam
	Disk diffusion: 16–18 hours		combination agents.
	Dilution methods: 16–20 hours		-
			When a commercial test system is used for susceptibility testing, refer to the manufacturer's instructions for QC test recommendations and QC ranges.

Clinical Chemistry 68:1 134-137 (2022)

Point/Counterpoint

Microbial Taxonomy: How and Why Name Changes Occur and Their Significance for (Clinical) Microbiology

Radhey S. Gupta*

Antonie van Leeuwenhoek (2014) 105:1049–1072 DOI 10.1007/s10482-014-0164-x

ORIGINAL PAPER

A phylogenomic and molecular marker based proposal for the division of the genus *Borrelia* into two genera: the emended genus *Borrelia* containing only the members of the relapsing fever *Borrelia*, and the genus *Borreliella* gen. nov. containing the members of the Lyme disease *Borrelia* (*Borrelia burgdorferi* sensu lato complex)

Mobolaji Adeolu · Radhey S. Gupta

Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus *Mycobacterium* into an Emended Genus *Mycobacterium* and Four Novel

Original Paper | Published: 20 March 2018

Genera

Department of Biochemistr

Radhey S. Gupta*,

Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order *Mycoplasmoidales* ord. nov., containing two new families *Mycoplasmoidaceae* fam. nov. and *Metamycoplasmataceae* fam. nov. harbouring *Eperythrozoon*, *Ureaplasma* and five novel genera

<u>Radhey S. Gupta ^[2], Sahil Sawnani, Mobolaji Adeolu, Seema Alnajar & Aharon Oren</u>

Antonie van Leeuwenhoek 111, 1583–1630(2018) Cite this article

Clin Chem. 2022; 68:134-137

SAME ORDER

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY ICSP - TAXONOMIC NOTE Tindall et al., Int J Syst Evol Microbiol 2017;67:502–504 DOI 10.1099/ijsem.0.001572

Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980)

B. J. Tindall,^{1,*} G. Sutton² and G. M. Garrity³

Klebsiella aerogenes originally "linked" to taxon Klebsiella mobilis; K. mobilis declared illegitimate

Empiric susceptibility consequences

Antimicrobial Agent	Percentage Susceptible				
	K. pneumoniae	K. aerogenes	<i>E. cloacae</i> complex		
ampicillin-sulbactam	81	0	0		
piperacillin-tazobactam	92	81	76		
cefazolin ⁺	91	0	0		
cefuroxime	85	0	0		
ceftazidime	93	82	74		
ceftriaxone	91	81	70		
cefepime	96	97	96		
aztreonam	92	84	75		
meropenem	99	99	99		
gentamicin	96	99	95		
ciprofloxacin	89	95	93		
trimethoprim-sulfamethoxazole	90	97	93		
nitrofurantoin	34	11	36		

⁺ CLSI M100 urine breakpoints

DON'T PANIC??

ORIGINAL RESEARCH published: 07 April 2020 doi: 10.3389/fmicb.2020.00468

Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of *Alphaproteobacteria*

Anton Hördt¹, Marina García López¹, Jan P. Meier-Kolthoff¹, Marcel Schleuning¹, Lisa-Maria Weinhold^{1,2}, Brian J. Tindall³, Sabine Gronow³, Nikos C. Kyrpides⁴, Tanja Woyke⁴ and Markus Göker^{1*}

Description of Brucella anthropi comb. nov.

B. an.thro'pi (Gr. masc. n. anthropos, a human being; N.L. gen. n. anthropi, of a human being).

Basonym: Ochrobactrum anthropi Holmes et al., 1988

The description is as given for Ochrobactrum anthropi (Holmes et al., 1988). The type strain is ATCC 49188 = CCUG 24695 = CIP 82.115 = DSMZ 6882 = IFO 15819 = JCM 21032 = LMG 3331 = NBRC 15819 = NCTC 12168.

Front Microbiol. 2020; 11:468

DIRTY DOZEN (out of 75)

Morganellaceae

Morganella (type genus) Proteus Providencia

THE DIRTY DOZEN

Yersiniaceae

Serratia Yersinia (type genus)

Hafniaceae

Edwardsiella

Enterobacteriaceae Citrobacter Enterobacter Escherichia (type genus) Klebsiella Salmonella Shigella

Int J Syst Evol Microbiol. 2016; 66:5575-5599

NAME THAT *Enterobacterales*

ility Indole MIO (Ornithine) Citrate Urea Phenylalanine

MORE "PEDAGOGY PRETEND"

• Aggregatibacter spp.

- Unifying characteristics of Enterobacteriaceae?
- Non-gonococcal urethritis

Yes, there are benefits

WE (SOME OF US) HAVE TO

CAP checklist standard MIC.11375

incorporate "taxonomic changes that potentially affect the choice of appropriate antimicrobials to report and/or the interpretive breakpoints to use"

PERFORMANCE OF RELEVANT AST

Actinobacillus actinomycetemcomitans

Haemophilus actino... 1985 M100 HTM (DD, BMD) 9 FQ, 15 cephems

Aggregatibacter actino... 2006 M45 MHB + lysed horse blood (BMD) 2 FQ, 2 cephems

M45

Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria

10100

Staphylococcus spp.

	Phenotypic Methods for Detection of Methicillin (Oxacillin)-Resistant Staphylococcus spp.						
Organism	Cefoxitin MIC	Cefoxitin disk diffusion	Oxacillin MIC	Oxacillin disk diffusion	Oxacillin salt agar		
S. aureus	Yes (16-20 h)	Yes (16-18 h)	Yes (24 h)	No	Yes (24 h)		
S. lugdunensis	Yes (16-20 h)	Yes (16-18 h)	Yes (24 h)	No	No		
S. epidermidis	No	Yes (24 h)	Yes (24 h)	Yes (16-18 h)	No		
S. pseudintermedius	No	No	Yes (24 h)	Yes (16-18 h)	No		
S. schleiferi	No	No	Yes (24 h)	Yes (16-18 h)	No		
Staphylococcus spp. (not listed above or not identified to the species level)	No	Yes ^a (24 h)	Yes ^a (24 h)	No	No		

PATHOGENESIS

• *Elizabethkingia anophelis* sp. nov. (Gambia; 2001)

Originally isolated from midgut of *Anopheles* spp. Neonatal meningitis; thought to require vector Identified as *E. meningoseptica* via biochemicals Hong Kong research revealed differences in clinical picture (sepsis, pneumonia, meningitis; ↑ mortality) and epidemiology (vertical transmission)

Sci Rep. 2016; 6:26045

• Enterobacter bugandensis sp. nov. (Tanzania; 2016)

Most pathogenic *Enterobacter* spp. (*in vitro*) Sci Rep. 2018; 8:5392

RESOLVE UNUSUAL PHENOTYPES

Corynebacterium belfantii sp. nov. (France; 2018) Formerly 1 of 4 biovars of *C. diphtheriae* Nitrate reductase-negative Toxin genetic determinant absent Clinical disease encompasses non-specific rhinitis Int J Syst Evol Microbiol. 2018; 68:3826-3831 C. diphtheriae subsp. lausannense subsp. nov. Nitrate reductase-negative Non-toxigenic Lower respiratory tract disease Front Microbiol. 2018; 9:1743

MICROBIOME CONTRIBUTION

Megasphaera massiliensis sp. nov. (Russia; 2013)

Originally isolated from feces of HIV-positive male In vitro models suggest organism has protective activity versus neuronal cell cytotoxicity

Front Cell Neurosci. 2019; 13:402

Ruthenibacterium lactatiformans sp. nov. (Russia; 2016)

Originally isolated from feces of healthy male Abundance of this organism found in patients with rheumatoid arthritis

Genes (Basel) 2019; 10:748

So what?

BIOGRAPHICAL FEATURE

Biographical Feature: Franklin P. Koontz, Ph.D., D(ABMM), F(AAM)

"So, I've just gone totally nuts on this stuff and I quit using the genus names. So, I'll call the floor and I tell them they've got a pickettii; they've got a maltophilia; they've got a cepacia. I don't give a genus name anymore because they're confusing the hell out of the doc; he doesn't know what Stenotrophomonas means, but he sure knows what maltophilia means. So, I think we have to stop this rampant name changing. I think it's stupid."

J Clin Microbiol. 58:e01975-19

HOW FAR DO YOU WANT TO GO??

Proteus morganii

Int J Syst Bacteriol. 1980; 30:225-420

Neisseria catarrhalis

Int J Syst Bacteriol. 1970; 20:155-159

Streptococcus faecalis

Int J Syst Bacteriol. 1984; 34:31-34

Bacillus coli (never validly published)

① Name: Branhamella catarrhalis (Frosch and Kolle 1896) Catlin 1970 (Approved Lists 1980)

① Category: Species

① Proposed as: comb. nov.

Basonym: "Mikrokokkus catarrhalis" Frosch and Kolle 1896

① Etymology: ca.tar.rha.lis. L. masc. n. <u>catarrhus</u>, a flowing down, the catarrh, rheum; L. masc./fem. adj. suff. <u>-a/is</u>, suffix denoting pertaining to; N.L. masc./fem. adj. <u>catarrhalis</u>, pertaining to a catarrh

Gender: feminine

① Type strain: ATCC 25238; CCUG 353; CIP 73.21; DSM 9143; LMG 5128; NCTC 11020; Ne 11

- See detailed strain information at BacDive 2000
- ① Conduct genome-based taxonomy at **TYGS**
- 16S rRNA gene: AJ247218 Analyse FASTA 📥 MARENA 😒 NCBI

① Effective publication: Catlin BW. Transfer of the organism named Neisseria catarrhalis to Branhamella gen. nov. International Journal of Systematic Bacteriology 1970; 20:155-159.

IJSEM list: Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225-420.

```
① Nomenclatural status: validly published under the ICNP
```

① Taxonomic status: correct name

lpsn.dsmz.de/species (www.bacterio.net)

HOW DO WE FIND OUT ABOUT THIS?

NUMBER 1

VOLUME 81

JANUARY 2015

Diagnostic Microbiology & Infectious Disease

www.dmidjournal.com

Included in this issue ...

MPACT INCOM

2.528

Molecular epidemiology of methicklin resistant Maphylooccus anness from 4 Cuban hospitals

Osney Leiva Pelácz et al.

Real-world performance of a microarray-based rapid diagnostic for Gram-positive bioodstream infections and potential utility for antimicrobial stewardship Samuel L. Altken et al.

Comparison of the Vitek MS and Bruker Microfiex LT MALDETOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory Easter Denk et al.

Emergence of sengroup 15 Steptocecus preumoniae of drivene genetic backgrounds following the introduction of porumococcat conjugate vaccines in Hong Kong Veranja Livanapathiuma et al.

Diagnostic Microbiology and Infectious Disease 83 (2015) 82-88

Contents lists available at ScienceDirect

Diagnostic Microbiology and Infectious Disease

journal homepage: www.elsevier.com/locate/diagmicrobio

Review

Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2013–2014

J. Michael Janda *

Public Health Laboratory, Department of Public Health, Kern County, Bakersfield, CA 93306-3302

ABSTRACT

A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate and rapid reporting and communications regarding infectious agents of clinical significance. Microbial taxonomy in the age of molecular diagnostics and phylogenetics causes changes in this taxonomy at a rapid rate further complicating this process. This review focuses on the description of new species and classification changes proposed over the past 2 years.

There have been five (2016, 2017, 2019, 2020)

HOW DO WE FIND OUT ABOUT THIS?

JOURNAL OF Clinical Microbiology

ABSTRACT Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the *International Journal of Systematic and Evolutionary Microbiology*. Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the *Journal of Clinical Microbiology* on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through 2015.

MINIREVIEW

J Clin Microbiol. 2017; 55:24-42

There will soon be four (2019, 2021, 2023)

APPROACHES DIFFER

Diagnostic Microbiology and Infectious Disease

Scope is bacteriology Not all data validated by *IJSEM* Novel taxa characterized by 5 strains (or clinical)

Journal of Clinical Microbiology

Scope expanded to include mycology, virology, parasitology, mycobacteriology (spoiler alert → veterinary!!!!) All bacterial taxa validated by *IJSEM* Includes all taxa derived from human clinical material Later publications have included follow-up

HELP MAY BE ON THE WAY

M64 (Document Development Committee) Guideline for Implementation of Taxonomy Nomenclature Changes

<u>Scope</u>

Bacteriology Mycology

Participants

Clinical (including veterinary) Industry Government

<u>Audience</u>

Clinical microbiology Veterinary microbiology

DISCUSSION TOPICS

 Role for International Journal of Systematic and Evolutionary Microbiology WRT bacteriology

Journal of Clinical Microbiology compendia

An assist for bacteriology revisions/changes Time zero for mycology revisions/changes

Some implementation can be expedited

Ancillary partner planning; instrument validation

Roll out/communication (reports, comments)

WAIT...WAIT...

Clinical relevance may not be determined

- Clinicians may become cognizant of changes
- Updating of databases by commercial vendors
- The earlier flip-flopping example
- Daily laboratory operations

Communication Multi-facility laboratory systems LIS updates

THANK YOU AND STAY TUNED!!

J Clin Microbiol. 2011; 49:3449

Diphyllobothrium latum is now Dibothriocephalus latus. And Clostridium difficile has become Clostridioides difficile.

J Clin Microbiol. 2019; 57:e00231-19